ultralytics-ascend/ultralytics/models/sam/modules/sam.py
Laughing 8648572809
ultralytics 8.2.70 Segment Anything Model 2 (SAM 2) (#14813)
Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com>
Co-authored-by: UltralyticsAssistant <web@ultralytics.com>
Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
2024-07-30 16:06:49 +02:00

63 lines
2.6 KiB
Python

# Ultralytics YOLO 🚀, AGPL-3.0 license
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
from typing import List
import torch
from torch import nn
from .decoders import MaskDecoder
from .encoders import ImageEncoderViT, PromptEncoder
class SAMModel(nn.Module):
"""
SAMModel (Segment Anything Model) is designed for object segmentation tasks. It uses image encoders to generate
image embeddings, and prompt encoders to encode various types of input prompts. These embeddings are then used by
the mask decoder to predict object masks.
Attributes:
mask_threshold (float): Threshold value for mask prediction.
image_encoder (ImageEncoderViT): The backbone used to encode the image into embeddings.
prompt_encoder (PromptEncoder): Encodes various types of input prompts.
mask_decoder (MaskDecoder): Predicts object masks from the image and prompt embeddings.
pixel_mean (List[float]): Mean pixel values for image normalization.
pixel_std (List[float]): Standard deviation values for image normalization.
"""
mask_threshold: float = 0.0
def __init__(
self,
image_encoder: ImageEncoderViT,
prompt_encoder: PromptEncoder,
mask_decoder: MaskDecoder,
pixel_mean: List[float] = (123.675, 116.28, 103.53),
pixel_std: List[float] = (58.395, 57.12, 57.375),
) -> None:
"""
Initialize the SAMModel class to predict object masks from an image and input prompts.
Note:
All forward() operations moved to SAMPredictor.
Args:
image_encoder (ImageEncoderViT): The backbone used to encode the image into image embeddings.
prompt_encoder (PromptEncoder): Encodes various types of input prompts.
mask_decoder (MaskDecoder): Predicts masks from the image embeddings and encoded prompts.
pixel_mean (List[float], optional): Mean values for normalizing pixels in the input image. Defaults to
(123.675, 116.28, 103.53).
pixel_std (List[float], optional): Std values for normalizing pixels in the input image. Defaults to
(58.395, 57.12, 57.375).
"""
super().__init__()
self.image_encoder = image_encoder
self.prompt_encoder = prompt_encoder
self.mask_decoder = mask_decoder
self.register_buffer("pixel_mean", torch.Tensor(pixel_mean).view(-1, 1, 1), False)
self.register_buffer("pixel_std", torch.Tensor(pixel_std).view(-1, 1, 1), False)