ultralytics 8.2.70 Segment Anything Model 2 (SAM 2) (#14813)
Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> Co-authored-by: UltralyticsAssistant <web@ultralytics.com> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
This commit is contained in:
parent
80f699ae21
commit
8648572809
36 changed files with 3276 additions and 77 deletions
|
|
@ -113,6 +113,8 @@ The following table details the available SAM 2 models, their pre-trained weight
|
|||
|
||||
| Model Type | Pre-trained Weights | Tasks Supported | Inference | Validation | Training | Export |
|
||||
| ----------- | ------------------------------------------------------------------------------------- | -------------------------------------------- | --------- | ---------- | -------- | ------ |
|
||||
| SAM 2 tiny | [sam2_t.pt](https://github.com/ultralytics/assets/releases/download/v8.2.0/sam2_t.pt) | [Instance Segmentation](../tasks/segment.md) | ✅ | ❌ | ❌ | ❌ |
|
||||
| SAM 2 small | [sam2_s.pt](https://github.com/ultralytics/assets/releases/download/v8.2.0/sam2_s.pt) | [Instance Segmentation](../tasks/segment.md) | ✅ | ❌ | ❌ | ❌ |
|
||||
| SAM 2 base | [sam2_b.pt](https://github.com/ultralytics/assets/releases/download/v8.2.0/sam2_b.pt) | [Instance Segmentation](../tasks/segment.md) | ✅ | ❌ | ❌ | ❌ |
|
||||
| SAM 2 large | [sam2_l.pt](https://github.com/ultralytics/assets/releases/download/v8.2.0/sam2_l.pt) | [Instance Segmentation](../tasks/segment.md) | ✅ | ❌ | ❌ | ❌ |
|
||||
|
||||
|
|
|
|||
|
|
@ -13,8 +13,4 @@ keywords: Ultralytics, MaskDecoder, MLP, machine learning, transformer architect
|
|||
|
||||
## ::: ultralytics.models.sam.modules.decoders.MaskDecoder
|
||||
|
||||
<br><br><hr><br>
|
||||
|
||||
## ::: ultralytics.models.sam.modules.decoders.MLP
|
||||
|
||||
<br><br>
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
---
|
||||
description: Discover the Ultralytics Sam module for object segmentation. Learn about its components, such as image encoders and mask decoders, in this comprehensive guide.
|
||||
keywords: Ultralytics, Sam Module, object segmentation, image encoder, mask decoder, prompt encoder, AI, machine learning
|
||||
description: Discover the Ultralytics SAM module for object segmentation. Learn about its components, such as image encoders and mask decoders, in this comprehensive guide.
|
||||
keywords: Ultralytics, SAM Module, object segmentation, image encoder, mask decoder, prompt encoder, AI, machine learning
|
||||
---
|
||||
|
||||
# Reference for `ultralytics/models/sam/modules/sam.py`
|
||||
|
|
@ -11,6 +11,6 @@ keywords: Ultralytics, Sam Module, object segmentation, image encoder, mask deco
|
|||
|
||||
<br>
|
||||
|
||||
## ::: ultralytics.models.sam.modules.sam.Sam
|
||||
## ::: ultralytics.models.sam.modules.sam.SAMModel
|
||||
|
||||
<br><br>
|
||||
|
|
|
|||
36
docs/en/reference/models/sam2/build.md
Normal file
36
docs/en/reference/models/sam2/build.md
Normal file
|
|
@ -0,0 +1,36 @@
|
|||
---
|
||||
description: Discover detailed instructions for building various Segment Anything Model 2 (SAM 2) architectures with Ultralytics.
|
||||
keywords: Ultralytics, SAM 2 model, Segment Anything Model 2, SAM, model building, deep learning, AI
|
||||
---
|
||||
|
||||
# Reference for `ultralytics/models/sam2/build.py`
|
||||
|
||||
!!! Note
|
||||
|
||||
This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/sam2/build.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/sam2/build.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/models/sam2/build.py) 🛠️. Thank you 🙏!
|
||||
|
||||
<br>
|
||||
|
||||
## ::: ultralytics.models.sam2.build.build_sam2_t
|
||||
|
||||
<br><br><hr><br>
|
||||
|
||||
## ::: ultralytics.models.sam2.build.build_sam2_s
|
||||
|
||||
<br><br><hr><br>
|
||||
|
||||
## ::: ultralytics.models.sam2.build.build_sam2_b
|
||||
|
||||
<br><br><hr><br>
|
||||
|
||||
## ::: ultralytics.models.sam2.build.build_sam2_l
|
||||
|
||||
<br><br><hr><br>
|
||||
|
||||
## ::: ultralytics.models.sam2.build._build_sam2
|
||||
|
||||
<br><br><hr><br>
|
||||
|
||||
## ::: ultralytics.models.sam2.build.build_sam2
|
||||
|
||||
<br><br>
|
||||
16
docs/en/reference/models/sam2/model.md
Normal file
16
docs/en/reference/models/sam2/model.md
Normal file
|
|
@ -0,0 +1,16 @@
|
|||
---
|
||||
description: Explore the SAM 2 (Segment Anything Model 2) interface for real-time image segmentation. Learn about promptable segmentation and zero-shot capabilities.
|
||||
keywords: Ultralytics, SAM 2, Segment Anything Model 2, image segmentation, real-time segmentation, zero-shot performance, promptable segmentation, SA-1B dataset
|
||||
---
|
||||
|
||||
# Reference for `ultralytics/models/sam2/model.py`
|
||||
|
||||
!!! Note
|
||||
|
||||
This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/sam2/model.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/sam2/model.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/models/sam2/model.py) 🛠️. Thank you 🙏!
|
||||
|
||||
<br>
|
||||
|
||||
## ::: ultralytics.models.sam2.model.SAM2
|
||||
|
||||
<br><br>
|
||||
16
docs/en/reference/models/sam2/modules/decoders.md
Normal file
16
docs/en/reference/models/sam2/modules/decoders.md
Normal file
|
|
@ -0,0 +1,16 @@
|
|||
---
|
||||
description: Explore the MaskDecoder and MLP modules in Ultralytics for efficient mask prediction using transformer architecture. Detailed attributes, functionalities, and implementation.
|
||||
keywords: Ultralytics, MaskDecoder, MLP, machine learning, transformer architecture, mask prediction, neural networks, PyTorch modules
|
||||
---
|
||||
|
||||
# Reference for `ultralytics/models/sam2/modules/decoders.py`
|
||||
|
||||
!!! Note
|
||||
|
||||
This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/sam2/modules/decoders.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/sam2/modules/decoders.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/models/sam2/modules/decoders.py) 🛠️. Thank you 🙏!
|
||||
|
||||
<br>
|
||||
|
||||
## ::: ultralytics.models.sam2.modules.decoders.MaskDecoder
|
||||
|
||||
<br><br>
|
||||
28
docs/en/reference/models/sam2/modules/encoders.md
Normal file
28
docs/en/reference/models/sam2/modules/encoders.md
Normal file
|
|
@ -0,0 +1,28 @@
|
|||
---
|
||||
description: Discover the Ultralytics SAM 2 module for object segmentation. Learn about its components, such as image encoders and mask decoders, in this comprehensive guide.
|
||||
keywords: Ultralytics, SAM 2 Module, object segmentation, image encoder, mask decoder, prompt encoder, AI, machine learning
|
||||
---
|
||||
|
||||
# Reference for `ultralytics/models/sam2/modules/encoders.py`
|
||||
|
||||
!!! Note
|
||||
|
||||
This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/sam2/modules/encoders.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/sam2/modules/encoders.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/models/sam2/modules/encoders.py) 🛠️. Thank you 🙏!
|
||||
|
||||
<br>
|
||||
|
||||
## ::: ultralytics.models.sam2.modules.encoders.MemoryEncoder
|
||||
|
||||
<br><br><hr><br>
|
||||
|
||||
## ::: ultralytics.models.sam2.modules.encoders.ImageEncoder
|
||||
|
||||
<br><br><hr><br>
|
||||
|
||||
## ::: ultralytics.models.sam2.modules.encoders.FpnNeck
|
||||
|
||||
<br><br><hr><br>
|
||||
|
||||
## ::: ultralytics.models.sam2.modules.encoders.Hiera
|
||||
|
||||
<br><br>
|
||||
20
docs/en/reference/models/sam2/modules/memory_attention.md
Normal file
20
docs/en/reference/models/sam2/modules/memory_attention.md
Normal file
|
|
@ -0,0 +1,20 @@
|
|||
---
|
||||
description: Explore detailed documentation of various SAM 2 encoder modules such as MemoryAttentionLayer, MemoryAttention, available in Ultralytics' repository.
|
||||
keywords: Ultralytics, SAM 2 encoder, MemoryAttentionLayer, MemoryAttention
|
||||
---
|
||||
|
||||
# Reference for `ultralytics/models/sam2/modules/memory_attention.py`
|
||||
|
||||
!!! Note
|
||||
|
||||
This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/sam2/modules/memory_attention.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/sam2/modules/memory_attention.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/models/sam2/modules/memory_attention.py) 🛠️. Thank you 🙏!
|
||||
|
||||
<br>
|
||||
|
||||
## ::: ultralytics.models.sam2.modules.memory_attention.MemoryAttentionLayer
|
||||
|
||||
<br><br><hr><br>
|
||||
|
||||
## ::: ultralytics.models.sam2.modules.memory_attention.MemoryAttention
|
||||
|
||||
<br><br>
|
||||
16
docs/en/reference/models/sam2/modules/sam2.md
Normal file
16
docs/en/reference/models/sam2/modules/sam2.md
Normal file
|
|
@ -0,0 +1,16 @@
|
|||
---
|
||||
description: Discover the Ultralytics SAM 2 module for object segmentation. Learn about its components, such as image encoders and mask decoders, in this comprehensive guide.
|
||||
keywords: Ultralytics, SAM 2 Module, object segmentation, image encoder, mask decoder, prompt encoder, AI, machine learning
|
||||
---
|
||||
|
||||
# Reference for `ultralytics/models/sam2/modules/sam2.py`
|
||||
|
||||
!!! Note
|
||||
|
||||
This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/sam2/modules/sam2.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/sam2/modules/sam2.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/models/sam2/modules/sam2.py) 🛠️. Thank you 🙏!
|
||||
|
||||
<br>
|
||||
|
||||
## ::: ultralytics.models.sam2.modules.sam2.SAM2Model
|
||||
|
||||
<br><br>
|
||||
56
docs/en/reference/models/sam2/modules/sam2_blocks.md
Normal file
56
docs/en/reference/models/sam2/modules/sam2_blocks.md
Normal file
|
|
@ -0,0 +1,56 @@
|
|||
---
|
||||
description: Explore detailed documentation of various SAM 2 modules such as MaskDownSampler, CXBlock, and more, available in Ultralytics' repository.
|
||||
keywords: Ultralytics, SAM 2 encoder, DropPath, MaskDownSampler, CXBlock, Fuser, TwoWayTransformer, TwoWayAttentionBlock, RoPEAttention, MultiScaleAttention, MultiScaleBlock. PositionEmbeddingSine, do_pool
|
||||
---
|
||||
|
||||
# Reference for `ultralytics/models/sam2/modules/sam2_blocks.py`
|
||||
|
||||
!!! Note
|
||||
|
||||
This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/sam2/modules/sam2_blocks.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/sam2/modules/sam2_blocks.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/models/sam2/modules/sam2_blocks.py) 🛠️. Thank you 🙏!
|
||||
|
||||
<br>
|
||||
|
||||
## ::: ultralytics.models.sam2.modules.sam2_blocks.DropPath
|
||||
|
||||
<br><br><hr><br>
|
||||
|
||||
## ::: ultralytics.models.sam2.modules.sam2_blocks.MaskDownSampler
|
||||
|
||||
<br><br><hr><br>
|
||||
|
||||
## ::: ultralytics.models.sam2.modules.sam2_blocks.CXBlock
|
||||
|
||||
<br><br><hr><br>
|
||||
|
||||
## ::: ultralytics.models.sam2.modules.sam2_blocks.Fuser
|
||||
|
||||
<br><br><hr><br>
|
||||
|
||||
## ::: ultralytics.models.sam2.modules.sam2_blocks.TwoWayAttentionBlock
|
||||
|
||||
<br><br><hr><br>
|
||||
|
||||
## ::: ultralytics.models.sam2.modules.sam2_blocks.TwoWayTransformer
|
||||
|
||||
<br><br><hr><br>
|
||||
|
||||
## ::: ultralytics.models.sam2.modules.sam2_blocks.RoPEAttention
|
||||
|
||||
<br><br><hr><br>
|
||||
|
||||
## ::: ultralytics.models.sam2.modules.sam2_blocks.MultiScaleAttention
|
||||
|
||||
<br><br><hr><br>
|
||||
|
||||
## ::: ultralytics.models.sam2.modules.sam2_blocks.MultiScaleBlock
|
||||
|
||||
<br><br><hr><br>
|
||||
|
||||
## ::: ultralytics.models.sam2.modules.sam2_blocks.PositionEmbeddingSine
|
||||
|
||||
<br><br><hr><br>
|
||||
|
||||
## ::: ultralytics.models.sam2.modules.sam2_blocks.do_pool
|
||||
|
||||
<br><br>
|
||||
44
docs/en/reference/models/sam2/modules/utils.md
Normal file
44
docs/en/reference/models/sam2/modules/utils.md
Normal file
|
|
@ -0,0 +1,44 @@
|
|||
---
|
||||
description: Explore the detailed API reference for Ultralytics SAM 2 models.
|
||||
keywords: Ultralytics, SAM 2, API Reference, models, window partition, data processing, YOLO
|
||||
---
|
||||
|
||||
# Reference for `ultralytics/models/sam2/modules/utils.py`
|
||||
|
||||
!!! Note
|
||||
|
||||
This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/sam2/modules/utils.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/sam2/modules/utils.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/models/sam2/modules/utils.py) 🛠️. Thank you 🙏!
|
||||
|
||||
<br>
|
||||
|
||||
## ::: ultralytics.models.sam2.modules.utils.select_closest_cond_frames
|
||||
|
||||
<br><br><hr><br>
|
||||
|
||||
## ::: ultralytics.models.sam2.modules.utils.get_1d_sine_pe
|
||||
|
||||
<br><br><hr><br>
|
||||
|
||||
## ::: ultralytics.models.sam2.modules.utils.init_t_xy
|
||||
|
||||
<br><br><hr><br>
|
||||
|
||||
## ::: ultralytics.models.sam2.modules.utils.compute_axial_cis
|
||||
|
||||
<br><br><hr><br>
|
||||
|
||||
## ::: ultralytics.models.sam2.modules.utils.reshape_for_broadcast
|
||||
|
||||
<br><br><hr><br>
|
||||
|
||||
## ::: ultralytics.models.sam2.modules.utils.apply_rotary_enc
|
||||
|
||||
<br><br><hr><br>
|
||||
|
||||
## ::: ultralytics.models.sam2.modules.utils.window_partition
|
||||
|
||||
<br><br><hr><br>
|
||||
|
||||
## ::: ultralytics.models.sam2.modules.utils.window_unpartition
|
||||
|
||||
<br><br>
|
||||
16
docs/en/reference/models/sam2/predict.md
Normal file
16
docs/en/reference/models/sam2/predict.md
Normal file
|
|
@ -0,0 +1,16 @@
|
|||
---
|
||||
description: Explore Ultralytics SAM 2 Predictor for advanced, real-time image segmentation using the Segment Anything Model 2 (SAM 2). Complete implementation details and auxiliary utilities.
|
||||
keywords: Ultralytics, SAM 2, Segment Anything Model 2, image segmentation, real-time, prediction, AI, machine learning, Python, torch, inference
|
||||
---
|
||||
|
||||
# Reference for `ultralytics/models/sam2/predict.py`
|
||||
|
||||
!!! Note
|
||||
|
||||
This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/sam2/predict.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/sam2/predict.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/models/sam2/predict.py) 🛠️. Thank you 🙏!
|
||||
|
||||
<br>
|
||||
|
||||
## ::: ultralytics.models.sam2.predict.SAM2Predictor
|
||||
|
||||
<br><br>
|
||||
13
mkdocs.yml
13
mkdocs.yml
|
|
@ -239,7 +239,7 @@ nav:
|
|||
- YOLOv9: models/yolov9.md
|
||||
- YOLOv10: models/yolov10.md
|
||||
- SAM (Segment Anything Model): models/sam.md
|
||||
- SAM2 (Segment Anything Model 2): models/sam-2.md
|
||||
- SAM 2 (Segment Anything Model 2): models/sam-2.md
|
||||
- MobileSAM (Mobile Segment Anything Model): models/mobile-sam.md
|
||||
- FastSAM (Fast Segment Anything Model): models/fast-sam.md
|
||||
- YOLO-NAS (Neural Architecture Search): models/yolo-nas.md
|
||||
|
|
@ -509,6 +509,17 @@ nav:
|
|||
- tiny_encoder: reference/models/sam/modules/tiny_encoder.md
|
||||
- transformer: reference/models/sam/modules/transformer.md
|
||||
- predict: reference/models/sam/predict.md
|
||||
- sam2:
|
||||
- build: reference/models/sam2/build.md
|
||||
- model: reference/models/sam2/model.md
|
||||
- modules:
|
||||
- decoders: reference/models/sam2/modules/decoders.md
|
||||
- encoders: reference/models/sam2/modules/encoders.md
|
||||
- memory_attention: reference/models/sam2/modules/memory_attention.md
|
||||
- sam2: reference/models/sam2/modules/sam2.md
|
||||
- sam2_blocks: reference/models/sam2/modules/sam2_blocks.md
|
||||
- utils: reference/models/sam2/modules/utils.md
|
||||
- predict: reference/models/sam2/predict.md
|
||||
- utils:
|
||||
- loss: reference/models/utils/loss.md
|
||||
- ops: reference/models/utils/ops.md
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
|
||||
__version__ = "8.2.69"
|
||||
__version__ = "8.2.70"
|
||||
|
||||
import os
|
||||
|
||||
|
|
@ -8,7 +8,7 @@ import os
|
|||
os.environ["OMP_NUM_THREADS"] = "1" # reduce CPU utilization during training
|
||||
|
||||
from ultralytics.data.explorer.explorer import Explorer
|
||||
from ultralytics.models import NAS, RTDETR, SAM, YOLO, FastSAM, YOLOWorld
|
||||
from ultralytics.models import NAS, RTDETR, SAM, SAM2, YOLO, FastSAM, YOLOWorld
|
||||
from ultralytics.utils import ASSETS, SETTINGS
|
||||
from ultralytics.utils.checks import check_yolo as checks
|
||||
from ultralytics.utils.downloads import download
|
||||
|
|
@ -21,6 +21,7 @@ __all__ = (
|
|||
"YOLOWorld",
|
||||
"NAS",
|
||||
"SAM",
|
||||
"SAM2",
|
||||
"FastSAM",
|
||||
"RTDETR",
|
||||
"checks",
|
||||
|
|
|
|||
|
|
@ -793,6 +793,10 @@ def entrypoint(debug=""):
|
|||
from ultralytics import FastSAM
|
||||
|
||||
model = FastSAM(model)
|
||||
elif "sam2" in stem:
|
||||
from ultralytics import SAM2
|
||||
|
||||
model = SAM2(model)
|
||||
elif "sam" in stem:
|
||||
from ultralytics import SAM
|
||||
|
||||
|
|
|
|||
|
|
@ -4,6 +4,7 @@ from .fastsam import FastSAM
|
|||
from .nas import NAS
|
||||
from .rtdetr import RTDETR
|
||||
from .sam import SAM
|
||||
from .sam2 import SAM2
|
||||
from .yolo import YOLO, YOLOWorld
|
||||
|
||||
__all__ = "YOLO", "RTDETR", "SAM", "FastSAM", "NAS", "YOLOWorld" # allow simpler import
|
||||
__all__ = "YOLO", "RTDETR", "SAM", "FastSAM", "NAS", "YOLOWorld", "SAM2" # allow simpler import
|
||||
|
|
|
|||
|
|
@ -21,6 +21,7 @@ class FastSAMPredictor(SegmentationPredictor):
|
|||
"""
|
||||
|
||||
def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None):
|
||||
"""Initializes a FastSAMPredictor for fast SAM segmentation tasks in Ultralytics YOLO framework."""
|
||||
super().__init__(cfg, overrides, _callbacks)
|
||||
self.prompts = {}
|
||||
|
||||
|
|
|
|||
|
|
@ -14,7 +14,7 @@ from ultralytics.utils.downloads import attempt_download_asset
|
|||
|
||||
from .modules.decoders import MaskDecoder
|
||||
from .modules.encoders import ImageEncoderViT, PromptEncoder
|
||||
from .modules.sam import Sam
|
||||
from .modules.sam import SAMModel
|
||||
from .modules.tiny_encoder import TinyViT
|
||||
from .modules.transformer import TwoWayTransformer
|
||||
|
||||
|
|
@ -105,7 +105,7 @@ def _build_sam(
|
|||
out_chans=prompt_embed_dim,
|
||||
)
|
||||
)
|
||||
sam = Sam(
|
||||
sam = SAMModel(
|
||||
image_encoder=image_encoder,
|
||||
prompt_encoder=PromptEncoder(
|
||||
embed_dim=prompt_embed_dim,
|
||||
|
|
|
|||
|
|
@ -44,6 +44,7 @@ class SAM(Model):
|
|||
"""
|
||||
if model and Path(model).suffix not in {".pt", ".pth"}:
|
||||
raise NotImplementedError("SAM prediction requires pre-trained *.pt or *.pth model.")
|
||||
self.is_sam2 = "sam2" in Path(model).stem
|
||||
super().__init__(model=model, task="segment")
|
||||
|
||||
def _load(self, weights: str, task=None):
|
||||
|
|
@ -54,7 +55,12 @@ class SAM(Model):
|
|||
weights (str): Path to the weights file.
|
||||
task (str, optional): Task name. Defaults to None.
|
||||
"""
|
||||
self.model = build_sam(weights)
|
||||
if self.is_sam2:
|
||||
from ..sam2.build import build_sam2
|
||||
|
||||
self.model = build_sam2(weights)
|
||||
else:
|
||||
self.model = build_sam(weights)
|
||||
|
||||
def predict(self, source, stream=False, bboxes=None, points=None, labels=None, **kwargs):
|
||||
"""
|
||||
|
|
@ -112,4 +118,6 @@ class SAM(Model):
|
|||
Returns:
|
||||
(dict): A dictionary mapping the 'segment' task to its corresponding 'Predictor'.
|
||||
"""
|
||||
return {"segment": {"predictor": Predictor}}
|
||||
from ..sam2.predict import SAM2Predictor
|
||||
|
||||
return {"segment": {"predictor": SAM2Predictor if self.is_sam2 else Predictor}}
|
||||
|
|
|
|||
|
|
@ -4,9 +4,8 @@ from typing import List, Tuple, Type
|
|||
|
||||
import torch
|
||||
from torch import nn
|
||||
from torch.nn import functional as F
|
||||
|
||||
from ultralytics.nn.modules import LayerNorm2d
|
||||
from ultralytics.nn.modules import MLP, LayerNorm2d
|
||||
|
||||
|
||||
class MaskDecoder(nn.Module):
|
||||
|
|
@ -28,7 +27,6 @@ class MaskDecoder(nn.Module):
|
|||
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
transformer_dim: int,
|
||||
transformer: nn.Module,
|
||||
num_multimask_outputs: int = 3,
|
||||
|
|
@ -149,42 +147,3 @@ class MaskDecoder(nn.Module):
|
|||
iou_pred = self.iou_prediction_head(iou_token_out)
|
||||
|
||||
return masks, iou_pred
|
||||
|
||||
|
||||
class MLP(nn.Module):
|
||||
"""
|
||||
MLP (Multi-Layer Perceptron) model lightly adapted from
|
||||
https://github.com/facebookresearch/MaskFormer/blob/main/mask_former/modeling/transformer/transformer_predictor.py
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
input_dim: int,
|
||||
hidden_dim: int,
|
||||
output_dim: int,
|
||||
num_layers: int,
|
||||
sigmoid_output: bool = False,
|
||||
) -> None:
|
||||
"""
|
||||
Initializes the MLP (Multi-Layer Perceptron) model.
|
||||
|
||||
Args:
|
||||
input_dim (int): The dimensionality of the input features.
|
||||
hidden_dim (int): The dimensionality of the hidden layers.
|
||||
output_dim (int): The dimensionality of the output layer.
|
||||
num_layers (int): The number of hidden layers.
|
||||
sigmoid_output (bool, optional): Apply a sigmoid activation to the output layer. Defaults to False.
|
||||
"""
|
||||
super().__init__()
|
||||
self.num_layers = num_layers
|
||||
h = [hidden_dim] * (num_layers - 1)
|
||||
self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim]))
|
||||
self.sigmoid_output = sigmoid_output
|
||||
|
||||
def forward(self, x):
|
||||
"""Executes feedforward within the neural network module and applies activation."""
|
||||
for i, layer in enumerate(self.layers):
|
||||
x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
|
||||
if self.sigmoid_output:
|
||||
x = torch.sigmoid(x)
|
||||
return x
|
||||
|
|
|
|||
|
|
@ -211,6 +211,8 @@ class PromptEncoder(nn.Module):
|
|||
point_embedding[labels == -1] += self.not_a_point_embed.weight
|
||||
point_embedding[labels == 0] += self.point_embeddings[0].weight
|
||||
point_embedding[labels == 1] += self.point_embeddings[1].weight
|
||||
point_embedding[labels == 2] += self.point_embeddings[2].weight
|
||||
point_embedding[labels == 3] += self.point_embeddings[3].weight
|
||||
return point_embedding
|
||||
|
||||
def _embed_boxes(self, boxes: torch.Tensor) -> torch.Tensor:
|
||||
|
|
@ -226,8 +228,8 @@ class PromptEncoder(nn.Module):
|
|||
"""Embeds mask inputs."""
|
||||
return self.mask_downscaling(masks)
|
||||
|
||||
@staticmethod
|
||||
def _get_batch_size(
|
||||
self,
|
||||
points: Optional[Tuple[torch.Tensor, torch.Tensor]],
|
||||
boxes: Optional[torch.Tensor],
|
||||
masks: Optional[torch.Tensor],
|
||||
|
|
|
|||
|
|
@ -15,15 +15,14 @@ from .decoders import MaskDecoder
|
|||
from .encoders import ImageEncoderViT, PromptEncoder
|
||||
|
||||
|
||||
class Sam(nn.Module):
|
||||
class SAMModel(nn.Module):
|
||||
"""
|
||||
Sam (Segment Anything Model) is designed for object segmentation tasks. It uses image encoders to generate image
|
||||
embeddings, and prompt encoders to encode various types of input prompts. These embeddings are then used by the mask
|
||||
decoder to predict object masks.
|
||||
SAMModel (Segment Anything Model) is designed for object segmentation tasks. It uses image encoders to generate
|
||||
image embeddings, and prompt encoders to encode various types of input prompts. These embeddings are then used by
|
||||
the mask decoder to predict object masks.
|
||||
|
||||
Attributes:
|
||||
mask_threshold (float): Threshold value for mask prediction.
|
||||
image_format (str): Format of the input image, default is 'RGB'.
|
||||
image_encoder (ImageEncoderViT): The backbone used to encode the image into embeddings.
|
||||
prompt_encoder (PromptEncoder): Encodes various types of input prompts.
|
||||
mask_decoder (MaskDecoder): Predicts object masks from the image and prompt embeddings.
|
||||
|
|
@ -32,7 +31,6 @@ class Sam(nn.Module):
|
|||
"""
|
||||
|
||||
mask_threshold: float = 0.0
|
||||
image_format: str = "RGB"
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
|
|
@ -43,7 +41,7 @@ class Sam(nn.Module):
|
|||
pixel_std: List[float] = (58.395, 57.12, 57.375),
|
||||
) -> None:
|
||||
"""
|
||||
Initialize the Sam class to predict object masks from an image and input prompts.
|
||||
Initialize the SAMModel class to predict object masks from an image and input prompts.
|
||||
|
||||
Note:
|
||||
All forward() operations moved to SAMPredictor.
|
||||
|
|
|
|||
|
|
@ -86,7 +86,6 @@ class TwoWayTransformer(nn.Module):
|
|||
(torch.Tensor): the processed image_embedding
|
||||
"""
|
||||
# BxCxHxW -> BxHWxC == B x N_image_tokens x C
|
||||
bs, c, h, w = image_embedding.shape
|
||||
image_embedding = image_embedding.flatten(2).permute(0, 2, 1)
|
||||
image_pe = image_pe.flatten(2).permute(0, 2, 1)
|
||||
|
||||
|
|
@ -212,6 +211,7 @@ class Attention(nn.Module):
|
|||
embedding_dim: int,
|
||||
num_heads: int,
|
||||
downsample_rate: int = 1,
|
||||
kv_in_dim: int = None,
|
||||
) -> None:
|
||||
"""
|
||||
Initializes the Attention model with the given dimensions and settings.
|
||||
|
|
@ -226,13 +226,14 @@ class Attention(nn.Module):
|
|||
"""
|
||||
super().__init__()
|
||||
self.embedding_dim = embedding_dim
|
||||
self.kv_in_dim = kv_in_dim if kv_in_dim is not None else embedding_dim
|
||||
self.internal_dim = embedding_dim // downsample_rate
|
||||
self.num_heads = num_heads
|
||||
assert self.internal_dim % num_heads == 0, "num_heads must divide embedding_dim."
|
||||
|
||||
self.q_proj = nn.Linear(embedding_dim, self.internal_dim)
|
||||
self.k_proj = nn.Linear(embedding_dim, self.internal_dim)
|
||||
self.v_proj = nn.Linear(embedding_dim, self.internal_dim)
|
||||
self.k_proj = nn.Linear(self.kv_in_dim, self.internal_dim)
|
||||
self.v_proj = nn.Linear(self.kv_in_dim, self.internal_dim)
|
||||
self.out_proj = nn.Linear(self.internal_dim, embedding_dim)
|
||||
|
||||
@staticmethod
|
||||
|
|
|
|||
|
|
@ -168,7 +168,7 @@ class Predictor(BasePredictor):
|
|||
- np.ndarray: An array of length C containing quality scores predicted by the model for each mask.
|
||||
- np.ndarray: Low-resolution logits of shape CxHxW for subsequent inference, where H=W=256.
|
||||
"""
|
||||
features = self.model.image_encoder(im) if self.features is None else self.features
|
||||
features = self.get_im_features(im) if self.features is None else self.features
|
||||
|
||||
src_shape, dst_shape = self.batch[1][0].shape[:2], im.shape[2:]
|
||||
r = 1.0 if self.segment_all else min(dst_shape[0] / src_shape[0], dst_shape[1] / src_shape[1])
|
||||
|
|
@ -334,7 +334,7 @@ class Predictor(BasePredictor):
|
|||
"""
|
||||
device = select_device(self.args.device, verbose=verbose)
|
||||
if model is None:
|
||||
model = build_sam(self.args.model)
|
||||
model = self.get_model()
|
||||
model.eval()
|
||||
self.model = model.to(device)
|
||||
self.device = device
|
||||
|
|
@ -348,6 +348,10 @@ class Predictor(BasePredictor):
|
|||
self.model.fp16 = False
|
||||
self.done_warmup = True
|
||||
|
||||
def get_model(self):
|
||||
"""Built Segment Anything Model (SAM) model."""
|
||||
return build_sam(self.args.model)
|
||||
|
||||
def postprocess(self, preds, img, orig_imgs):
|
||||
"""
|
||||
Post-processes SAM's inference outputs to generate object detection masks and bounding boxes.
|
||||
|
|
@ -412,16 +416,18 @@ class Predictor(BasePredictor):
|
|||
AssertionError: If more than one image is set.
|
||||
"""
|
||||
if self.model is None:
|
||||
model = build_sam(self.args.model)
|
||||
self.setup_model(model)
|
||||
self.setup_model(model=None)
|
||||
self.setup_source(image)
|
||||
assert len(self.dataset) == 1, "`set_image` only supports setting one image!"
|
||||
for batch in self.dataset:
|
||||
im = self.preprocess(batch[1])
|
||||
self.features = self.model.image_encoder(im)
|
||||
self.im = im
|
||||
self.features = self.get_im_features(im)
|
||||
break
|
||||
|
||||
def get_im_features(self, im):
|
||||
"""Get image features from the SAM image encoder."""
|
||||
return self.model.image_encoder(im)
|
||||
|
||||
def set_prompts(self, prompts):
|
||||
"""Set prompts in advance."""
|
||||
self.prompts = prompts
|
||||
|
|
|
|||
6
ultralytics/models/sam2/__init__.py
Normal file
6
ultralytics/models/sam2/__init__.py
Normal file
|
|
@ -0,0 +1,6 @@
|
|||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
|
||||
from .model import SAM2
|
||||
from .predict import SAM2Predictor
|
||||
|
||||
__all__ = "SAM2", "SAM2Predictor" # tuple or list
|
||||
156
ultralytics/models/sam2/build.py
Normal file
156
ultralytics/models/sam2/build.py
Normal file
|
|
@ -0,0 +1,156 @@
|
|||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
|
||||
import torch
|
||||
|
||||
from ultralytics.utils.downloads import attempt_download_asset
|
||||
|
||||
from .modules.encoders import FpnNeck, Hiera, ImageEncoder, MemoryEncoder
|
||||
from .modules.memory_attention import MemoryAttention, MemoryAttentionLayer
|
||||
from .modules.sam2 import SAM2Model
|
||||
|
||||
|
||||
def build_sam2_t(checkpoint=None):
|
||||
"""Build and return a Segment Anything Model (SAM2) tiny-size model with specified architecture parameters."""
|
||||
return _build_sam2(
|
||||
encoder_embed_dim=96,
|
||||
encoder_stages=[1, 2, 7, 2],
|
||||
encoder_num_heads=1,
|
||||
encoder_global_att_blocks=[5, 7, 9],
|
||||
encoder_window_spec=[8, 4, 14, 7],
|
||||
encoder_backbone_channel_list=[768, 384, 192, 96],
|
||||
checkpoint=checkpoint,
|
||||
)
|
||||
|
||||
|
||||
def build_sam2_s(checkpoint=None):
|
||||
"""Builds and returns a small-size Segment Anything Model (SAM2) with specified architecture parameters."""
|
||||
return _build_sam2(
|
||||
encoder_embed_dim=96,
|
||||
encoder_stages=[1, 2, 11, 2],
|
||||
encoder_num_heads=1,
|
||||
encoder_global_att_blocks=[7, 10, 13],
|
||||
encoder_window_spec=[8, 4, 14, 7],
|
||||
encoder_backbone_channel_list=[768, 384, 192, 96],
|
||||
checkpoint=checkpoint,
|
||||
)
|
||||
|
||||
|
||||
def build_sam2_b(checkpoint=None):
|
||||
"""Builds and returns a Segment Anything Model (SAM2) base-size model with specified architecture parameters."""
|
||||
return _build_sam2(
|
||||
encoder_embed_dim=112,
|
||||
encoder_stages=[2, 3, 16, 3],
|
||||
encoder_num_heads=2,
|
||||
encoder_global_att_blocks=[12, 16, 20],
|
||||
encoder_window_spec=[8, 4, 14, 7],
|
||||
encoder_window_spatial_size=[14, 14],
|
||||
encoder_backbone_channel_list=[896, 448, 224, 112],
|
||||
checkpoint=checkpoint,
|
||||
)
|
||||
|
||||
|
||||
def build_sam2_l(checkpoint=None):
|
||||
"""Build and return a Segment Anything Model (SAM2) large-size model with specified architecture parameters."""
|
||||
return _build_sam2(
|
||||
encoder_embed_dim=144,
|
||||
encoder_stages=[2, 6, 36, 4],
|
||||
encoder_num_heads=2,
|
||||
encoder_global_att_blocks=[23, 33, 43],
|
||||
encoder_window_spec=[8, 4, 16, 8],
|
||||
encoder_backbone_channel_list=[1152, 576, 288, 144],
|
||||
checkpoint=checkpoint,
|
||||
)
|
||||
|
||||
|
||||
def _build_sam2(
|
||||
encoder_embed_dim=1280,
|
||||
encoder_stages=[2, 6, 36, 4],
|
||||
encoder_num_heads=2,
|
||||
encoder_global_att_blocks=[7, 15, 23, 31],
|
||||
encoder_backbone_channel_list=[1152, 576, 288, 144],
|
||||
encoder_window_spatial_size=[7, 7],
|
||||
encoder_window_spec=[8, 4, 16, 8],
|
||||
checkpoint=None,
|
||||
):
|
||||
"""Builds a SAM2 model with specified architecture parameters and optional checkpoint loading."""
|
||||
image_encoder = ImageEncoder(
|
||||
trunk=Hiera(
|
||||
embed_dim=encoder_embed_dim,
|
||||
num_heads=encoder_num_heads,
|
||||
stages=encoder_stages,
|
||||
global_att_blocks=encoder_global_att_blocks,
|
||||
window_pos_embed_bkg_spatial_size=encoder_window_spatial_size,
|
||||
window_spec=encoder_window_spec,
|
||||
),
|
||||
neck=FpnNeck(
|
||||
d_model=256,
|
||||
backbone_channel_list=encoder_backbone_channel_list,
|
||||
fpn_top_down_levels=[2, 3],
|
||||
fpn_interp_model="nearest",
|
||||
),
|
||||
scalp=1,
|
||||
)
|
||||
memory_attention = MemoryAttention(d_model=256, pos_enc_at_input=True, num_layers=4, layer=MemoryAttentionLayer())
|
||||
memory_encoder = MemoryEncoder(out_dim=64)
|
||||
|
||||
sam2 = SAM2Model(
|
||||
image_encoder=image_encoder,
|
||||
memory_attention=memory_attention,
|
||||
memory_encoder=memory_encoder,
|
||||
num_maskmem=7,
|
||||
image_size=1024,
|
||||
sigmoid_scale_for_mem_enc=20.0,
|
||||
sigmoid_bias_for_mem_enc=-10.0,
|
||||
use_mask_input_as_output_without_sam=True,
|
||||
directly_add_no_mem_embed=True,
|
||||
use_high_res_features_in_sam=True,
|
||||
multimask_output_in_sam=True,
|
||||
iou_prediction_use_sigmoid=True,
|
||||
use_obj_ptrs_in_encoder=True,
|
||||
add_tpos_enc_to_obj_ptrs=True,
|
||||
only_obj_ptrs_in_the_past_for_eval=True,
|
||||
pred_obj_scores=True,
|
||||
pred_obj_scores_mlp=True,
|
||||
fixed_no_obj_ptr=True,
|
||||
multimask_output_for_tracking=True,
|
||||
use_multimask_token_for_obj_ptr=True,
|
||||
multimask_min_pt_num=0,
|
||||
multimask_max_pt_num=1,
|
||||
use_mlp_for_obj_ptr_proj=True,
|
||||
compile_image_encoder=False,
|
||||
sam_mask_decoder_extra_args=dict(
|
||||
dynamic_multimask_via_stability=True,
|
||||
dynamic_multimask_stability_delta=0.05,
|
||||
dynamic_multimask_stability_thresh=0.98,
|
||||
),
|
||||
)
|
||||
|
||||
if checkpoint is not None:
|
||||
checkpoint = attempt_download_asset(checkpoint)
|
||||
with open(checkpoint, "rb") as f:
|
||||
state_dict = torch.load(f)["model"]
|
||||
sam2.load_state_dict(state_dict)
|
||||
sam2.eval()
|
||||
return sam2
|
||||
|
||||
|
||||
sam_model_map = {
|
||||
"sam2_t.pt": build_sam2_t,
|
||||
"sam2_s.pt": build_sam2_s,
|
||||
"sam2_b.pt": build_sam2_b,
|
||||
"sam2_l.pt": build_sam2_l,
|
||||
}
|
||||
|
||||
|
||||
def build_sam2(ckpt="sam_b.pt"):
|
||||
"""Constructs a Segment Anything Model (SAM2) based on the specified checkpoint, with various size options."""
|
||||
model_builder = None
|
||||
ckpt = str(ckpt) # to allow Path ckpt types
|
||||
for k in sam_model_map.keys():
|
||||
if ckpt.endswith(k):
|
||||
model_builder = sam_model_map.get(k)
|
||||
|
||||
if not model_builder:
|
||||
raise FileNotFoundError(f"{ckpt} is not a supported SAM model. Available models are: \n {sam_model_map.keys()}")
|
||||
|
||||
return model_builder(ckpt)
|
||||
97
ultralytics/models/sam2/model.py
Normal file
97
ultralytics/models/sam2/model.py
Normal file
|
|
@ -0,0 +1,97 @@
|
|||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
"""
|
||||
SAM2 model interface.
|
||||
|
||||
This module provides an interface to the Segment Anything Model (SAM2) from Ultralytics, designed for real-time image
|
||||
segmentation tasks. The SAM2 model allows for promptable segmentation with unparalleled versatility in image analysis,
|
||||
and has been trained on the SA-1B dataset. It features zero-shot performance capabilities, enabling it to adapt to new
|
||||
image distributions and tasks without prior knowledge.
|
||||
|
||||
Key Features:
|
||||
- Promptable segmentation
|
||||
- Real-time performance
|
||||
- Zero-shot transfer capabilities
|
||||
- Trained on SA-1B dataset
|
||||
"""
|
||||
|
||||
from ultralytics.models.sam import SAM
|
||||
|
||||
from .build import build_sam2
|
||||
from .predict import SAM2Predictor
|
||||
|
||||
|
||||
class SAM2(SAM):
|
||||
"""
|
||||
SAM2 class for real-time image segmentation using the Segment Anything Model (SAM2).
|
||||
|
||||
This class extends the SAM base class, providing an interface to the SAM2 model for promptable segmentation
|
||||
tasks. It supports loading pre-trained weights and offers zero-shot performance capabilities.
|
||||
|
||||
Attributes:
|
||||
model (torch.nn.Module): The loaded SAM2 model.
|
||||
task_map (Dict[str, Type[SAM2Predictor]]): Mapping of 'segment' task to SAM2Predictor.
|
||||
|
||||
Methods:
|
||||
__init__: Initializes the SAM2 model with pre-trained weights.
|
||||
_load: Loads specified weights into the SAM2 model.
|
||||
|
||||
Examples:
|
||||
>>> sam2 = SAM2("sam2_b.pt")
|
||||
>>> sam2._load('path/to/sam2_weights.pt')
|
||||
>>> task_map = sam2.task_map
|
||||
>>> print(task_map)
|
||||
{'segment': SAM2Predictor}
|
||||
|
||||
Notes:
|
||||
- Supports .pt and .pth file extensions for model weights.
|
||||
- Offers zero-shot transfer capabilities for new image distributions and tasks.
|
||||
"""
|
||||
|
||||
def __init__(self, model="sam2_b.pt") -> None:
|
||||
"""
|
||||
Initializes the SAM2 model with a pre-trained model file.
|
||||
|
||||
Args:
|
||||
model (str): Path to the pre-trained SAM2 model file. File should have a .pt or .pth extension.
|
||||
|
||||
Raises:
|
||||
NotImplementedError: If the model file extension is not .pt or .pth.
|
||||
|
||||
Examples:
|
||||
>>> sam2 = SAM2("sam2_b.pt")
|
||||
"""
|
||||
super().__init__(model=model)
|
||||
|
||||
def _load(self, weights: str, task=None):
|
||||
"""
|
||||
Loads the specified weights into the SAM2 model.
|
||||
|
||||
This method is responsible for loading pre-trained weights into the SAM2 model. It supports loading
|
||||
weights from files with .pt or .pth extensions.
|
||||
|
||||
Args:
|
||||
weights (str): Path to the weights file. Should be a file with .pt or .pth extension.
|
||||
task (str | None): Task name. If provided, it may be used to configure model-specific settings.
|
||||
|
||||
Examples:
|
||||
>>> sam2_model = SAM2()
|
||||
>>> sam2_model._load('path/to/sam2_weights.pt')
|
||||
"""
|
||||
self.model = build_sam2(weights)
|
||||
|
||||
@property
|
||||
def task_map(self):
|
||||
"""
|
||||
Provides a mapping from the 'segment' task to its corresponding 'Predictor'.
|
||||
|
||||
Returns:
|
||||
(Dict[str, Type[SAM2Predictor]]): A dictionary mapping the 'segment' task to its corresponding
|
||||
SAM2Predictor class.
|
||||
|
||||
Examples:
|
||||
>>> sam2 = SAM2()
|
||||
>>> task_map = sam2.task_map
|
||||
>>> print(task_map)
|
||||
{'segment': SAM2Predictor}
|
||||
"""
|
||||
return {"segment": {"predictor": SAM2Predictor}}
|
||||
1
ultralytics/models/sam2/modules/__init__.py
Normal file
1
ultralytics/models/sam2/modules/__init__.py
Normal file
|
|
@ -0,0 +1 @@
|
|||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
305
ultralytics/models/sam2/modules/decoders.py
Normal file
305
ultralytics/models/sam2/modules/decoders.py
Normal file
|
|
@ -0,0 +1,305 @@
|
|||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
|
||||
from typing import List, Optional, Tuple, Type
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
|
||||
from ultralytics.nn.modules import MLP, LayerNorm2d
|
||||
|
||||
|
||||
class MaskDecoder(nn.Module):
|
||||
"""Transformer-based decoder predicting instance segmentation masks from image and prompt embeddings."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
transformer_dim: int,
|
||||
transformer: nn.Module,
|
||||
num_multimask_outputs: int = 3,
|
||||
activation: Type[nn.Module] = nn.GELU,
|
||||
iou_head_depth: int = 3,
|
||||
iou_head_hidden_dim: int = 256,
|
||||
use_high_res_features: bool = False,
|
||||
iou_prediction_use_sigmoid=False,
|
||||
dynamic_multimask_via_stability=False,
|
||||
dynamic_multimask_stability_delta=0.05,
|
||||
dynamic_multimask_stability_thresh=0.98,
|
||||
pred_obj_scores: bool = False,
|
||||
pred_obj_scores_mlp: bool = False,
|
||||
use_multimask_token_for_obj_ptr: bool = False,
|
||||
) -> None:
|
||||
"""
|
||||
Initializes the MaskDecoder module for predicting instance segmentation masks.
|
||||
|
||||
Args:
|
||||
transformer_dim (int): Channel dimension of the transformer.
|
||||
transformer (nn.Module): Transformer used to predict masks.
|
||||
num_multimask_outputs (int): Number of masks to predict when disambiguating masks.
|
||||
activation (Type[nn.Module]): Type of activation to use when upscaling masks.
|
||||
iou_head_depth (int): Depth of the MLP used to predict mask quality.
|
||||
iou_head_hidden_dim (int): Hidden dimension of the MLP used to predict mask quality.
|
||||
use_high_res_features (bool): Whether to use high-resolution features.
|
||||
iou_prediction_use_sigmoid (bool): Whether to use sigmoid for IOU prediction.
|
||||
dynamic_multimask_via_stability (bool): Whether to use dynamic multimask via stability.
|
||||
dynamic_multimask_stability_delta (float): Delta value for dynamic multimask stability.
|
||||
dynamic_multimask_stability_thresh (float): Threshold for dynamic multimask stability.
|
||||
pred_obj_scores (bool): Whether to predict object scores.
|
||||
pred_obj_scores_mlp (bool): Whether to use MLP for object score prediction.
|
||||
use_multimask_token_for_obj_ptr (bool): Whether to use multimask token for object pointer.
|
||||
|
||||
Attributes:
|
||||
transformer_dim (int): Channel dimension of the transformer.
|
||||
transformer (nn.Module): Transformer used to predict masks.
|
||||
num_multimask_outputs (int): Number of masks to predict when disambiguating masks.
|
||||
iou_token (nn.Embedding): Embedding for IOU token.
|
||||
num_mask_tokens (int): Total number of mask tokens.
|
||||
mask_tokens (nn.Embedding): Embedding for mask tokens.
|
||||
pred_obj_scores (bool): Whether to predict object scores.
|
||||
obj_score_token (nn.Embedding): Embedding for object score token.
|
||||
use_multimask_token_for_obj_ptr (bool): Whether to use multimask token for object pointer.
|
||||
output_upscaling (nn.Sequential): Upscaling layers for output.
|
||||
use_high_res_features (bool): Whether to use high-resolution features.
|
||||
conv_s0 (nn.Conv2d): Convolutional layer for high-resolution features (s0).
|
||||
conv_s1 (nn.Conv2d): Convolutional layer for high-resolution features (s1).
|
||||
output_hypernetworks_mlps (nn.ModuleList): List of MLPs for output hypernetworks.
|
||||
iou_prediction_head (MLP): MLP for IOU prediction.
|
||||
pred_obj_score_head (nn.Linear | MLP): Linear layer or MLP for object score prediction.
|
||||
dynamic_multimask_via_stability (bool): Whether to use dynamic multimask via stability.
|
||||
dynamic_multimask_stability_delta (float): Delta value for dynamic multimask stability.
|
||||
"""
|
||||
super().__init__()
|
||||
self.transformer_dim = transformer_dim
|
||||
self.transformer = transformer
|
||||
|
||||
self.num_multimask_outputs = num_multimask_outputs
|
||||
|
||||
self.iou_token = nn.Embedding(1, transformer_dim)
|
||||
self.num_mask_tokens = num_multimask_outputs + 1
|
||||
self.mask_tokens = nn.Embedding(self.num_mask_tokens, transformer_dim)
|
||||
|
||||
self.pred_obj_scores = pred_obj_scores
|
||||
if self.pred_obj_scores:
|
||||
self.obj_score_token = nn.Embedding(1, transformer_dim)
|
||||
self.use_multimask_token_for_obj_ptr = use_multimask_token_for_obj_ptr
|
||||
|
||||
self.output_upscaling = nn.Sequential(
|
||||
nn.ConvTranspose2d(transformer_dim, transformer_dim // 4, kernel_size=2, stride=2),
|
||||
LayerNorm2d(transformer_dim // 4),
|
||||
activation(),
|
||||
nn.ConvTranspose2d(transformer_dim // 4, transformer_dim // 8, kernel_size=2, stride=2),
|
||||
activation(),
|
||||
)
|
||||
self.use_high_res_features = use_high_res_features
|
||||
if use_high_res_features:
|
||||
self.conv_s0 = nn.Conv2d(transformer_dim, transformer_dim // 8, kernel_size=1, stride=1)
|
||||
self.conv_s1 = nn.Conv2d(transformer_dim, transformer_dim // 4, kernel_size=1, stride=1)
|
||||
|
||||
self.output_hypernetworks_mlps = nn.ModuleList(
|
||||
[MLP(transformer_dim, transformer_dim, transformer_dim // 8, 3) for _ in range(self.num_mask_tokens)]
|
||||
)
|
||||
|
||||
self.iou_prediction_head = MLP(
|
||||
transformer_dim,
|
||||
iou_head_hidden_dim,
|
||||
self.num_mask_tokens,
|
||||
iou_head_depth,
|
||||
sigmoid=iou_prediction_use_sigmoid,
|
||||
)
|
||||
if self.pred_obj_scores:
|
||||
self.pred_obj_score_head = nn.Linear(transformer_dim, 1)
|
||||
if pred_obj_scores_mlp:
|
||||
self.pred_obj_score_head = MLP(transformer_dim, transformer_dim, 1, 3)
|
||||
|
||||
# When outputting a single mask, optionally we can dynamically fall back to the best
|
||||
# multimask output token if the single mask output token gives low stability scores.
|
||||
self.dynamic_multimask_via_stability = dynamic_multimask_via_stability
|
||||
self.dynamic_multimask_stability_delta = dynamic_multimask_stability_delta
|
||||
self.dynamic_multimask_stability_thresh = dynamic_multimask_stability_thresh
|
||||
|
||||
def forward(
|
||||
self,
|
||||
image_embeddings: torch.Tensor,
|
||||
image_pe: torch.Tensor,
|
||||
sparse_prompt_embeddings: torch.Tensor,
|
||||
dense_prompt_embeddings: torch.Tensor,
|
||||
multimask_output: bool,
|
||||
repeat_image: bool,
|
||||
high_res_features: Optional[List[torch.Tensor]] = None,
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
"""
|
||||
Predicts masks given image and prompt embeddings.
|
||||
|
||||
Args:
|
||||
image_embeddings (torch.Tensor): Embeddings from the image encoder.
|
||||
image_pe (torch.Tensor): Positional encoding with the shape of image_embeddings.
|
||||
sparse_prompt_embeddings (torch.Tensor): Embeddings of the points and boxes.
|
||||
dense_prompt_embeddings (torch.Tensor): Embeddings of the mask inputs.
|
||||
multimask_output (bool): Whether to return multiple masks or a single mask.
|
||||
repeat_image (bool): Flag to repeat the image embeddings.
|
||||
high_res_features (List[torch.Tensor] | None): Optional high-resolution features.
|
||||
|
||||
Returns:
|
||||
(Tuple[torch.Tensor, torch.Tensor, torch.Tensor]): A tuple containing:
|
||||
- masks (torch.Tensor): Batched predicted masks.
|
||||
- iou_pred (torch.Tensor): Batched predictions of mask quality.
|
||||
- sam_tokens_out (torch.Tensor): Batched SAM token for mask output.
|
||||
|
||||
Examples:
|
||||
>>> image_embeddings = torch.rand(1, 256, 64, 64)
|
||||
>>> image_pe = torch.rand(1, 256, 64, 64)
|
||||
>>> sparse_prompt_embeddings = torch.rand(1, 2, 256)
|
||||
>>> dense_prompt_embeddings = torch.rand(1, 256, 64, 64)
|
||||
>>> decoder = MaskDecoder(256, transformer)
|
||||
>>> masks, iou_pred, sam_tokens_out = decoder.forward(image_embeddings, image_pe,
|
||||
... sparse_prompt_embeddings, dense_prompt_embeddings, True, False)
|
||||
"""
|
||||
masks, iou_pred, mask_tokens_out, object_score_logits = self.predict_masks(
|
||||
image_embeddings=image_embeddings,
|
||||
image_pe=image_pe,
|
||||
sparse_prompt_embeddings=sparse_prompt_embeddings,
|
||||
dense_prompt_embeddings=dense_prompt_embeddings,
|
||||
repeat_image=repeat_image,
|
||||
high_res_features=high_res_features,
|
||||
)
|
||||
|
||||
# Select the correct mask or masks for output
|
||||
if multimask_output:
|
||||
masks = masks[:, 1:, :, :]
|
||||
iou_pred = iou_pred[:, 1:]
|
||||
elif self.dynamic_multimask_via_stability and not self.training:
|
||||
masks, iou_pred = self._dynamic_multimask_via_stability(masks, iou_pred)
|
||||
else:
|
||||
masks = masks[:, 0:1, :, :]
|
||||
iou_pred = iou_pred[:, 0:1]
|
||||
|
||||
if multimask_output and self.use_multimask_token_for_obj_ptr:
|
||||
sam_tokens_out = mask_tokens_out[:, 1:] # [b, 3, c] shape
|
||||
else:
|
||||
# Take the mask output token. Here we *always* use the token for single mask output.
|
||||
# At test time, even if we track after 1-click (and using multimask_output=True),
|
||||
# we still take the single mask token here. The rationale is that we always track
|
||||
# after multiple clicks during training, so the past tokens seen during training
|
||||
# are always the single mask token (and we'll let it be the object-memory token).
|
||||
sam_tokens_out = mask_tokens_out[:, 0:1] # [b, 1, c] shape
|
||||
|
||||
# Prepare output
|
||||
return masks, iou_pred, sam_tokens_out, object_score_logits
|
||||
|
||||
def predict_masks(
|
||||
self,
|
||||
image_embeddings: torch.Tensor,
|
||||
image_pe: torch.Tensor,
|
||||
sparse_prompt_embeddings: torch.Tensor,
|
||||
dense_prompt_embeddings: torch.Tensor,
|
||||
repeat_image: bool,
|
||||
high_res_features: Optional[List[torch.Tensor]] = None,
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
"""Predicts instance segmentation masks from image and prompt embeddings using a transformer architecture."""
|
||||
# Concatenate output tokens
|
||||
s = 0
|
||||
if self.pred_obj_scores:
|
||||
output_tokens = torch.cat(
|
||||
[
|
||||
self.obj_score_token.weight,
|
||||
self.iou_token.weight,
|
||||
self.mask_tokens.weight,
|
||||
],
|
||||
dim=0,
|
||||
)
|
||||
s = 1
|
||||
else:
|
||||
output_tokens = torch.cat([self.iou_token.weight, self.mask_tokens.weight], dim=0)
|
||||
output_tokens = output_tokens.unsqueeze(0).expand(sparse_prompt_embeddings.size(0), -1, -1)
|
||||
tokens = torch.cat((output_tokens, sparse_prompt_embeddings), dim=1)
|
||||
|
||||
# Expand per-image data in batch direction to be per-mask
|
||||
if repeat_image:
|
||||
src = torch.repeat_interleave(image_embeddings, tokens.shape[0], dim=0)
|
||||
else:
|
||||
assert image_embeddings.shape[0] == tokens.shape[0]
|
||||
src = image_embeddings
|
||||
src = src + dense_prompt_embeddings
|
||||
assert image_pe.size(0) == 1, "image_pe should have size 1 in batch dim (from `get_dense_pe()`)"
|
||||
pos_src = torch.repeat_interleave(image_pe, tokens.shape[0], dim=0)
|
||||
b, c, h, w = src.shape
|
||||
|
||||
# Run the transformer
|
||||
hs, src = self.transformer(src, pos_src, tokens)
|
||||
iou_token_out = hs[:, s, :]
|
||||
mask_tokens_out = hs[:, s + 1 : (s + 1 + self.num_mask_tokens), :]
|
||||
|
||||
# Upscale mask embeddings and predict masks using the mask tokens
|
||||
src = src.transpose(1, 2).view(b, c, h, w)
|
||||
if not self.use_high_res_features:
|
||||
upscaled_embedding = self.output_upscaling(src)
|
||||
else:
|
||||
dc1, ln1, act1, dc2, act2 = self.output_upscaling
|
||||
feat_s0, feat_s1 = high_res_features
|
||||
upscaled_embedding = act1(ln1(dc1(src) + feat_s1))
|
||||
upscaled_embedding = act2(dc2(upscaled_embedding) + feat_s0)
|
||||
|
||||
hyper_in_list: List[torch.Tensor] = []
|
||||
for i in range(self.num_mask_tokens):
|
||||
hyper_in_list.append(self.output_hypernetworks_mlps[i](mask_tokens_out[:, i, :]))
|
||||
hyper_in = torch.stack(hyper_in_list, dim=1)
|
||||
b, c, h, w = upscaled_embedding.shape
|
||||
masks = (hyper_in @ upscaled_embedding.view(b, c, h * w)).view(b, -1, h, w)
|
||||
|
||||
# Generate mask quality predictions
|
||||
iou_pred = self.iou_prediction_head(iou_token_out)
|
||||
if self.pred_obj_scores:
|
||||
assert s == 1
|
||||
object_score_logits = self.pred_obj_score_head(hs[:, 0, :])
|
||||
else:
|
||||
# Obj scores logits - default to 10.0, i.e. assuming the object is present, sigmoid(10)=1
|
||||
object_score_logits = 10.0 * iou_pred.new_ones(iou_pred.shape[0], 1)
|
||||
|
||||
return masks, iou_pred, mask_tokens_out, object_score_logits
|
||||
|
||||
def _get_stability_scores(self, mask_logits):
|
||||
"""Computes mask stability scores based on IoU between upper and lower thresholds."""
|
||||
mask_logits = mask_logits.flatten(-2)
|
||||
stability_delta = self.dynamic_multimask_stability_delta
|
||||
area_i = torch.sum(mask_logits > stability_delta, dim=-1).float()
|
||||
area_u = torch.sum(mask_logits > -stability_delta, dim=-1).float()
|
||||
stability_scores = torch.where(area_u > 0, area_i / area_u, 1.0)
|
||||
return stability_scores
|
||||
|
||||
def _dynamic_multimask_via_stability(self, all_mask_logits, all_iou_scores):
|
||||
"""
|
||||
Dynamically selects the most stable mask output based on stability scores and IoU predictions.
|
||||
|
||||
When outputting a single mask, if the stability score from the current single-mask output (based on output token
|
||||
0) falls below a threshold, we instead select from multi-mask outputs (based on output token 1~3) the mask with
|
||||
the highest predicted IoU score.
|
||||
|
||||
This is intended to ensure a valid mask for both clicking and tracking.
|
||||
"""
|
||||
# The best mask from multimask output tokens (1~3)
|
||||
multimask_logits = all_mask_logits[:, 1:, :, :]
|
||||
multimask_iou_scores = all_iou_scores[:, 1:]
|
||||
best_scores_inds = torch.argmax(multimask_iou_scores, dim=-1)
|
||||
batch_inds = torch.arange(multimask_iou_scores.size(0), device=all_iou_scores.device)
|
||||
best_multimask_logits = multimask_logits[batch_inds, best_scores_inds]
|
||||
best_multimask_logits = best_multimask_logits.unsqueeze(1)
|
||||
best_multimask_iou_scores = multimask_iou_scores[batch_inds, best_scores_inds]
|
||||
best_multimask_iou_scores = best_multimask_iou_scores.unsqueeze(1)
|
||||
|
||||
# The mask from singlemask output token 0 and its stability score
|
||||
singlemask_logits = all_mask_logits[:, 0:1, :, :]
|
||||
singlemask_iou_scores = all_iou_scores[:, 0:1]
|
||||
stability_scores = self._get_stability_scores(singlemask_logits)
|
||||
is_stable = stability_scores >= self.dynamic_multimask_stability_thresh
|
||||
|
||||
# Dynamically fall back to best multimask output upon low stability scores.
|
||||
mask_logits_out = torch.where(
|
||||
is_stable[..., None, None].expand_as(singlemask_logits),
|
||||
singlemask_logits,
|
||||
best_multimask_logits,
|
||||
)
|
||||
iou_scores_out = torch.where(
|
||||
is_stable.expand_as(singlemask_iou_scores),
|
||||
singlemask_iou_scores,
|
||||
best_multimask_iou_scores,
|
||||
)
|
||||
return mask_logits_out, iou_scores_out
|
||||
332
ultralytics/models/sam2/modules/encoders.py
Normal file
332
ultralytics/models/sam2/modules/encoders.py
Normal file
|
|
@ -0,0 +1,332 @@
|
|||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
|
||||
from typing import List, Optional, Tuple
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
from ultralytics.models.sam.modules.encoders import PatchEmbed
|
||||
|
||||
from .sam2_blocks import CXBlock, Fuser, MaskDownSampler, MultiScaleBlock, PositionEmbeddingSine
|
||||
|
||||
|
||||
class MemoryEncoder(nn.Module):
|
||||
"""Encodes pixel features and masks into a memory representation for efficient image segmentation."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
out_dim,
|
||||
in_dim=256, # in_dim of pix_feats
|
||||
):
|
||||
"""Initializes the MemoryEncoder module for encoding pixel features and masks in SAM-like models."""
|
||||
super().__init__()
|
||||
|
||||
self.mask_downsampler = MaskDownSampler(kernel_size=3, stride=2, padding=1)
|
||||
|
||||
self.pix_feat_proj = nn.Conv2d(in_dim, in_dim, kernel_size=1)
|
||||
self.fuser = Fuser(CXBlock(dim=256), num_layers=2)
|
||||
self.position_encoding = PositionEmbeddingSine(num_pos_feats=64)
|
||||
self.out_proj = nn.Identity()
|
||||
if out_dim != in_dim:
|
||||
self.out_proj = nn.Conv2d(in_dim, out_dim, kernel_size=1)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
pix_feat: torch.Tensor,
|
||||
masks: torch.Tensor,
|
||||
skip_mask_sigmoid: bool = False,
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
"""Processes pixel features and masks, fusing them to generate encoded memory representations."""
|
||||
if not skip_mask_sigmoid:
|
||||
masks = F.sigmoid(masks)
|
||||
masks = self.mask_downsampler(masks)
|
||||
|
||||
# Fuse pix_feats and downsampled masks, in case the visual features are on CPU, cast them to CUDA
|
||||
pix_feat = pix_feat.to(masks.device)
|
||||
|
||||
x = self.pix_feat_proj(pix_feat)
|
||||
x = x + masks
|
||||
x = self.fuser(x)
|
||||
x = self.out_proj(x)
|
||||
|
||||
pos = self.position_encoding(x).to(x.dtype)
|
||||
|
||||
return {"vision_features": x, "vision_pos_enc": [pos]}
|
||||
|
||||
|
||||
class ImageEncoder(nn.Module):
|
||||
"""Encodes images using a trunk-neck architecture, producing multiscale features and positional encodings."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
trunk: nn.Module,
|
||||
neck: nn.Module,
|
||||
scalp: int = 0,
|
||||
):
|
||||
"""Initializes an image encoder with a trunk, neck, and optional scalp for feature extraction."""
|
||||
super().__init__()
|
||||
self.trunk = trunk
|
||||
self.neck = neck
|
||||
self.scalp = scalp
|
||||
assert (
|
||||
self.trunk.channel_list == self.neck.backbone_channel_list
|
||||
), f"Channel dims of trunk {self.trunk.channel_list} and neck {self.neck.backbone_channel_list} do not match."
|
||||
|
||||
def forward(self, sample: torch.Tensor):
|
||||
"""Processes image input through trunk and neck, returning features, positional encodings, and FPN outputs."""
|
||||
features, pos = self.neck(self.trunk(sample))
|
||||
if self.scalp > 0:
|
||||
# Discard the lowest resolution features
|
||||
features, pos = features[: -self.scalp], pos[: -self.scalp]
|
||||
|
||||
src = features[-1]
|
||||
output = {
|
||||
"vision_features": src,
|
||||
"vision_pos_enc": pos,
|
||||
"backbone_fpn": features,
|
||||
}
|
||||
return output
|
||||
|
||||
|
||||
class FpnNeck(nn.Module):
|
||||
"""Feature Pyramid Network (FPN) neck variant for multiscale feature fusion in object detection models."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
d_model: int,
|
||||
backbone_channel_list: List[int],
|
||||
kernel_size: int = 1,
|
||||
stride: int = 1,
|
||||
padding: int = 0,
|
||||
fpn_interp_model: str = "bilinear",
|
||||
fuse_type: str = "sum",
|
||||
fpn_top_down_levels: Optional[List[int]] = None,
|
||||
):
|
||||
"""
|
||||
Initializes a modified Feature Pyramid Network (FPN) neck.
|
||||
|
||||
This FPN variant removes the output convolution and uses bicubic interpolation for feature resizing,
|
||||
similar to ViT positional embedding interpolation.
|
||||
|
||||
Args:
|
||||
d_model (int): Dimension of the model.
|
||||
backbone_channel_list (List[int]): List of channel dimensions from the backbone.
|
||||
kernel_size (int): Kernel size for the convolutional layers.
|
||||
stride (int): Stride for the convolutional layers.
|
||||
padding (int): Padding for the convolutional layers.
|
||||
fpn_interp_model (str): Interpolation mode for FPN feature resizing.
|
||||
fuse_type (str): Type of feature fusion, either 'sum' or 'avg'.
|
||||
fpn_top_down_levels (Optional[List[int]]): Levels to have top-down features in outputs.
|
||||
|
||||
Attributes:
|
||||
position_encoding (PositionEmbeddingSine): Sinusoidal positional encoding.
|
||||
convs (nn.ModuleList): List of convolutional layers for each backbone level.
|
||||
backbone_channel_list (List[int]): List of channel dimensions from the backbone.
|
||||
fpn_interp_model (str): Interpolation mode for FPN feature resizing.
|
||||
fuse_type (str): Type of feature fusion.
|
||||
fpn_top_down_levels (List[int]): Levels with top-down feature propagation.
|
||||
|
||||
Examples:
|
||||
>>> backbone_channels = [64, 128, 256, 512]
|
||||
>>> fpn_neck = FpnNeck(256, backbone_channels)
|
||||
>>> print(fpn_neck)
|
||||
"""
|
||||
super().__init__()
|
||||
self.position_encoding = PositionEmbeddingSine(num_pos_feats=256)
|
||||
self.convs = nn.ModuleList()
|
||||
self.backbone_channel_list = backbone_channel_list
|
||||
for dim in backbone_channel_list:
|
||||
current = nn.Sequential()
|
||||
current.add_module(
|
||||
"conv",
|
||||
nn.Conv2d(
|
||||
in_channels=dim,
|
||||
out_channels=d_model,
|
||||
kernel_size=kernel_size,
|
||||
stride=stride,
|
||||
padding=padding,
|
||||
),
|
||||
)
|
||||
|
||||
self.convs.append(current)
|
||||
self.fpn_interp_model = fpn_interp_model
|
||||
assert fuse_type in ["sum", "avg"]
|
||||
self.fuse_type = fuse_type
|
||||
|
||||
# levels to have top-down features in its outputs
|
||||
# e.g. if fpn_top_down_levels is [2, 3], then only outputs of level 2 and 3
|
||||
# have top-down propagation, while outputs of level 0 and level 1 have only
|
||||
# lateral features from the same backbone level.
|
||||
if fpn_top_down_levels is None:
|
||||
# default is to have top-down features on all levels
|
||||
fpn_top_down_levels = range(len(self.convs))
|
||||
self.fpn_top_down_levels = list(fpn_top_down_levels)
|
||||
|
||||
def forward(self, xs: List[torch.Tensor]):
|
||||
"""
|
||||
Performs forward pass through the Feature Pyramid Network (FPN) neck.
|
||||
|
||||
Args:
|
||||
xs (List[torch.Tensor]): List of input tensors from the backbone, with shape (B, C, H, W) for each tensor.
|
||||
|
||||
Returns:
|
||||
(Tuple[List[torch.Tensor], List[torch.Tensor]]): A tuple containing two lists:
|
||||
- out: List of output feature maps after FPN processing, with shape (B, d_model, H, W) for each tensor.
|
||||
- pos: List of positional encodings corresponding to each output feature map.
|
||||
|
||||
Examples:
|
||||
>>> fpn_neck = FpnNeck(d_model=256, backbone_channel_list=[64, 128, 256, 512])
|
||||
>>> inputs = [torch.rand(1, c, 32, 32) for c in [64, 128, 256, 512]]
|
||||
>>> outputs, positions = fpn_neck(inputs)
|
||||
"""
|
||||
out = [None] * len(self.convs)
|
||||
pos = [None] * len(self.convs)
|
||||
assert len(xs) == len(self.convs)
|
||||
# fpn forward pass
|
||||
# see https://github.com/facebookresearch/detectron2/blob/main/detectron2/modeling/backbone/fpn.py
|
||||
prev_features = None
|
||||
# forward in top-down order (from low to high resolution)
|
||||
n = len(self.convs) - 1
|
||||
for i in range(n, -1, -1):
|
||||
x = xs[i]
|
||||
lateral_features = self.convs[n - i](x)
|
||||
if i in self.fpn_top_down_levels and prev_features is not None:
|
||||
top_down_features = F.interpolate(
|
||||
prev_features.to(dtype=torch.float32),
|
||||
scale_factor=2.0,
|
||||
mode=self.fpn_interp_model,
|
||||
align_corners=(None if self.fpn_interp_model == "nearest" else False),
|
||||
antialias=False,
|
||||
)
|
||||
prev_features = lateral_features + top_down_features
|
||||
if self.fuse_type == "avg":
|
||||
prev_features /= 2
|
||||
else:
|
||||
prev_features = lateral_features
|
||||
x_out = prev_features
|
||||
out[i] = x_out
|
||||
pos[i] = self.position_encoding(x_out).to(x_out.dtype)
|
||||
|
||||
return out, pos
|
||||
|
||||
|
||||
class Hiera(nn.Module):
|
||||
"""Hierarchical vision transformer for efficient multiscale feature extraction in image processing tasks."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
embed_dim: int = 96, # initial embed dim
|
||||
num_heads: int = 1, # initial number of heads
|
||||
drop_path_rate: float = 0.0, # stochastic depth
|
||||
q_pool: int = 3, # number of q_pool stages
|
||||
q_stride: Tuple[int, int] = (2, 2), # downsample stride bet. stages
|
||||
stages: Tuple[int, ...] = (2, 3, 16, 3), # blocks per stage
|
||||
dim_mul: float = 2.0, # dim_mul factor at stage shift
|
||||
head_mul: float = 2.0, # head_mul factor at stage shift
|
||||
window_pos_embed_bkg_spatial_size: Tuple[int, int] = (14, 14),
|
||||
# window size per stage, when not using global att.
|
||||
window_spec: Tuple[int, ...] = (
|
||||
8,
|
||||
4,
|
||||
14,
|
||||
7,
|
||||
),
|
||||
# global attn in these blocks
|
||||
global_att_blocks: Tuple[int, ...] = (
|
||||
12,
|
||||
16,
|
||||
20,
|
||||
),
|
||||
return_interm_layers=True, # return feats from every stage
|
||||
):
|
||||
"""Initializes a Hiera model with configurable architecture for hierarchical vision transformers."""
|
||||
super().__init__()
|
||||
|
||||
assert len(stages) == len(window_spec)
|
||||
self.window_spec = window_spec
|
||||
|
||||
depth = sum(stages)
|
||||
self.q_stride = q_stride
|
||||
self.stage_ends = [sum(stages[:i]) - 1 for i in range(1, len(stages) + 1)]
|
||||
assert 0 <= q_pool <= len(self.stage_ends[:-1])
|
||||
self.q_pool_blocks = [x + 1 for x in self.stage_ends[:-1]][:q_pool]
|
||||
self.return_interm_layers = return_interm_layers
|
||||
|
||||
self.patch_embed = PatchEmbed(
|
||||
embed_dim=embed_dim,
|
||||
kernel_size=(7, 7),
|
||||
stride=(4, 4),
|
||||
padding=(3, 3),
|
||||
)
|
||||
# Which blocks have global att?
|
||||
self.global_att_blocks = global_att_blocks
|
||||
|
||||
# Windowed positional embedding (https://arxiv.org/abs/2311.05613)
|
||||
self.window_pos_embed_bkg_spatial_size = window_pos_embed_bkg_spatial_size
|
||||
self.pos_embed = nn.Parameter(torch.zeros(1, embed_dim, *self.window_pos_embed_bkg_spatial_size))
|
||||
self.pos_embed_window = nn.Parameter(torch.zeros(1, embed_dim, self.window_spec[0], self.window_spec[0]))
|
||||
|
||||
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
|
||||
|
||||
cur_stage = 1
|
||||
self.blocks = nn.ModuleList()
|
||||
|
||||
for i in range(depth):
|
||||
dim_out = embed_dim
|
||||
# lags by a block, so first block of
|
||||
# next stage uses an initial window size
|
||||
# of previous stage and final window size of current stage
|
||||
window_size = self.window_spec[cur_stage - 1]
|
||||
|
||||
if self.global_att_blocks is not None:
|
||||
window_size = 0 if i in self.global_att_blocks else window_size
|
||||
|
||||
if i - 1 in self.stage_ends:
|
||||
dim_out = int(embed_dim * dim_mul)
|
||||
num_heads = int(num_heads * head_mul)
|
||||
cur_stage += 1
|
||||
|
||||
block = MultiScaleBlock(
|
||||
dim=embed_dim,
|
||||
dim_out=dim_out,
|
||||
num_heads=num_heads,
|
||||
drop_path=dpr[i],
|
||||
q_stride=self.q_stride if i in self.q_pool_blocks else None,
|
||||
window_size=window_size,
|
||||
)
|
||||
|
||||
embed_dim = dim_out
|
||||
self.blocks.append(block)
|
||||
|
||||
self.channel_list = (
|
||||
[self.blocks[i].dim_out for i in self.stage_ends[::-1]]
|
||||
if return_interm_layers
|
||||
else [self.blocks[-1].dim_out]
|
||||
)
|
||||
|
||||
def _get_pos_embed(self, hw: Tuple[int, int]) -> torch.Tensor:
|
||||
"""Generate positional embeddings by interpolating and combining window and background embeddings."""
|
||||
h, w = hw
|
||||
window_embed = self.pos_embed_window
|
||||
pos_embed = F.interpolate(self.pos_embed, size=(h, w), mode="bicubic")
|
||||
pos_embed = pos_embed + window_embed.tile([x // y for x, y in zip(pos_embed.shape, window_embed.shape)])
|
||||
pos_embed = pos_embed.permute(0, 2, 3, 1)
|
||||
return pos_embed
|
||||
|
||||
def forward(self, x: torch.Tensor) -> List[torch.Tensor]:
|
||||
"""Performs hierarchical vision transformer forward pass, returning multiscale feature maps."""
|
||||
x = self.patch_embed(x)
|
||||
# x: (B, H, W, C)
|
||||
|
||||
# Add pos embed
|
||||
x = x + self._get_pos_embed(x.shape[1:3])
|
||||
|
||||
outputs = []
|
||||
for i, blk in enumerate(self.blocks):
|
||||
x = blk(x)
|
||||
if (i == self.stage_ends[-1]) or (i in self.stage_ends and self.return_interm_layers):
|
||||
feats = x.permute(0, 3, 1, 2)
|
||||
outputs.append(feats)
|
||||
|
||||
return outputs
|
||||
170
ultralytics/models/sam2/modules/memory_attention.py
Normal file
170
ultralytics/models/sam2/modules/memory_attention.py
Normal file
|
|
@ -0,0 +1,170 @@
|
|||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
|
||||
import copy
|
||||
from typing import Optional
|
||||
|
||||
import torch
|
||||
from torch import Tensor, nn
|
||||
|
||||
from .sam2_blocks import RoPEAttention
|
||||
|
||||
|
||||
class MemoryAttentionLayer(nn.Module):
|
||||
"""Implements a memory attention layer with self-attention and cross-attention mechanisms for neural networks."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
d_model: int = 256,
|
||||
dim_feedforward: int = 2048,
|
||||
dropout: float = 0.1,
|
||||
pos_enc_at_attn: bool = False,
|
||||
pos_enc_at_cross_attn_keys: bool = True,
|
||||
pos_enc_at_cross_attn_queries: bool = False,
|
||||
):
|
||||
"""Initializes a MemoryAttentionLayer with self-attention, cross-attention, and feedforward components."""
|
||||
super().__init__()
|
||||
self.d_model = d_model
|
||||
self.dim_feedforward = dim_feedforward
|
||||
self.dropout_value = dropout
|
||||
self.self_attn = RoPEAttention(embedding_dim=256, num_heads=1, downsample_rate=1)
|
||||
self.cross_attn_image = RoPEAttention(
|
||||
rope_k_repeat=True,
|
||||
embedding_dim=256,
|
||||
num_heads=1,
|
||||
downsample_rate=1,
|
||||
kv_in_dim=64,
|
||||
)
|
||||
|
||||
# Implementation of Feedforward model
|
||||
self.linear1 = nn.Linear(d_model, dim_feedforward)
|
||||
self.dropout = nn.Dropout(dropout)
|
||||
self.linear2 = nn.Linear(dim_feedforward, d_model)
|
||||
|
||||
self.norm1 = nn.LayerNorm(d_model)
|
||||
self.norm2 = nn.LayerNorm(d_model)
|
||||
self.norm3 = nn.LayerNorm(d_model)
|
||||
self.dropout1 = nn.Dropout(dropout)
|
||||
self.dropout2 = nn.Dropout(dropout)
|
||||
self.dropout3 = nn.Dropout(dropout)
|
||||
|
||||
self.activation = nn.ReLU()
|
||||
|
||||
# Where to add pos enc
|
||||
self.pos_enc_at_attn = pos_enc_at_attn
|
||||
self.pos_enc_at_cross_attn_queries = pos_enc_at_cross_attn_queries
|
||||
self.pos_enc_at_cross_attn_keys = pos_enc_at_cross_attn_keys
|
||||
|
||||
def _forward_sa(self, tgt, query_pos):
|
||||
"""Performs self-attention on input tensor using positional encoding and RoPE attention mechanism."""
|
||||
tgt2 = self.norm1(tgt)
|
||||
q = k = tgt2 + query_pos if self.pos_enc_at_attn else tgt2
|
||||
tgt2 = self.self_attn(q, k, v=tgt2)
|
||||
tgt = tgt + self.dropout1(tgt2)
|
||||
return tgt
|
||||
|
||||
def _forward_ca(self, tgt, memory, query_pos, pos, num_k_exclude_rope=0):
|
||||
"""Performs cross-attention between target and memory tensors using RoPEAttention mechanism."""
|
||||
kwds = {}
|
||||
if num_k_exclude_rope > 0:
|
||||
assert isinstance(self.cross_attn_image, RoPEAttention)
|
||||
kwds = {"num_k_exclude_rope": num_k_exclude_rope}
|
||||
|
||||
# Cross-Attention
|
||||
tgt2 = self.norm2(tgt)
|
||||
tgt2 = self.cross_attn_image(
|
||||
q=tgt2 + query_pos if self.pos_enc_at_cross_attn_queries else tgt2,
|
||||
k=memory + pos if self.pos_enc_at_cross_attn_keys else memory,
|
||||
v=memory,
|
||||
**kwds,
|
||||
)
|
||||
tgt = tgt + self.dropout2(tgt2)
|
||||
return tgt
|
||||
|
||||
def forward(
|
||||
self,
|
||||
tgt,
|
||||
memory,
|
||||
pos: Optional[Tensor] = None,
|
||||
query_pos: Optional[Tensor] = None,
|
||||
num_k_exclude_rope: int = 0,
|
||||
) -> torch.Tensor:
|
||||
"""Performs self-attention, cross-attention, and MLP operations on input tensors for memory-based attention."""
|
||||
tgt = self._forward_sa(tgt, query_pos)
|
||||
tgt = self._forward_ca(tgt, memory, query_pos, pos, num_k_exclude_rope)
|
||||
# MLP
|
||||
tgt2 = self.norm3(tgt)
|
||||
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2))))
|
||||
tgt = tgt + self.dropout3(tgt2)
|
||||
return tgt
|
||||
|
||||
|
||||
class MemoryAttention(nn.Module):
|
||||
"""Memory attention module for processing sequential data with self and cross-attention mechanisms."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
d_model: int,
|
||||
pos_enc_at_input: bool,
|
||||
layer: nn.Module,
|
||||
num_layers: int,
|
||||
batch_first: bool = True, # Do layers expect batch first input?
|
||||
):
|
||||
"""Initializes MemoryAttention module with layers and normalization for attention processing."""
|
||||
super().__init__()
|
||||
self.d_model = d_model
|
||||
self.layers = nn.ModuleList([copy.deepcopy(layer) for _ in range(num_layers)])
|
||||
self.num_layers = num_layers
|
||||
self.norm = nn.LayerNorm(d_model)
|
||||
self.pos_enc_at_input = pos_enc_at_input
|
||||
self.batch_first = batch_first
|
||||
|
||||
def forward(
|
||||
self,
|
||||
curr: torch.Tensor, # self-attention inputs
|
||||
memory: torch.Tensor, # cross-attention inputs
|
||||
curr_pos: Optional[Tensor] = None, # pos_enc for self-attention inputs
|
||||
memory_pos: Optional[Tensor] = None, # pos_enc for cross-attention inputs
|
||||
num_obj_ptr_tokens: int = 0, # number of object pointer *tokens*
|
||||
):
|
||||
"""Applies self-attention and cross-attention to input tensors, processing through multiple layers."""
|
||||
if isinstance(curr, list):
|
||||
assert isinstance(curr_pos, list)
|
||||
assert len(curr) == len(curr_pos) == 1
|
||||
curr, curr_pos = (
|
||||
curr[0],
|
||||
curr_pos[0],
|
||||
)
|
||||
|
||||
assert curr.shape[1] == memory.shape[1], "Batch size must be the same for curr and memory"
|
||||
|
||||
output = curr
|
||||
if self.pos_enc_at_input and curr_pos is not None:
|
||||
output = output + 0.1 * curr_pos
|
||||
|
||||
if self.batch_first:
|
||||
# Convert to batch first
|
||||
output = output.transpose(0, 1)
|
||||
curr_pos = curr_pos.transpose(0, 1)
|
||||
memory = memory.transpose(0, 1)
|
||||
memory_pos = memory_pos.transpose(0, 1)
|
||||
|
||||
for layer in self.layers:
|
||||
kwds = {}
|
||||
if isinstance(layer.cross_attn_image, RoPEAttention):
|
||||
kwds = {"num_k_exclude_rope": num_obj_ptr_tokens}
|
||||
|
||||
output = layer(
|
||||
tgt=output,
|
||||
memory=memory,
|
||||
pos=memory_pos,
|
||||
query_pos=curr_pos,
|
||||
**kwds,
|
||||
)
|
||||
normed_output = self.norm(output)
|
||||
|
||||
if self.batch_first:
|
||||
# Convert back to seq first
|
||||
normed_output = normed_output.transpose(0, 1)
|
||||
curr_pos = curr_pos.transpose(0, 1)
|
||||
|
||||
return normed_output
|
||||
804
ultralytics/models/sam2/modules/sam2.py
Normal file
804
ultralytics/models/sam2/modules/sam2.py
Normal file
|
|
@ -0,0 +1,804 @@
|
|||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
|
||||
import torch
|
||||
import torch.distributed
|
||||
import torch.nn.functional as F
|
||||
from torch.nn.init import trunc_normal_
|
||||
|
||||
from ultralytics.models.sam.modules.encoders import PromptEncoder
|
||||
from ultralytics.nn.modules import MLP
|
||||
|
||||
from .decoders import MaskDecoder
|
||||
from .sam2_blocks import TwoWayTransformer
|
||||
from .utils import get_1d_sine_pe, select_closest_cond_frames
|
||||
|
||||
# a large negative value as a placeholder score for missing objects
|
||||
NO_OBJ_SCORE = -1024.0
|
||||
|
||||
|
||||
class SAM2Model(torch.nn.Module):
|
||||
"""SAM2Model class for Segment Anything Model 2 with memory-based video object segmentation capabilities."""
|
||||
|
||||
mask_threshold: float = 0.0
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
image_encoder,
|
||||
memory_attention,
|
||||
memory_encoder,
|
||||
num_maskmem=7, # default 1 input frame + 6 previous frames
|
||||
image_size=512,
|
||||
backbone_stride=16, # stride of the image backbone output
|
||||
sigmoid_scale_for_mem_enc=1.0, # scale factor for mask sigmoid prob
|
||||
sigmoid_bias_for_mem_enc=0.0, # bias factor for mask sigmoid prob
|
||||
# During evaluation, whether to binarize the sigmoid mask logits on interacted frames with clicks
|
||||
binarize_mask_from_pts_for_mem_enc=False,
|
||||
use_mask_input_as_output_without_sam=False, # on frames with mask input, whether to directly output the input mask without using a SAM prompt encoder + mask decoder
|
||||
# The maximum number of conditioning frames to participate in the memory attention (-1 means no limit; if there are more conditioning frames than this limit,
|
||||
# we only cross-attend to the temporally closest `max_cond_frames_in_attn` conditioning frames in the encoder when tracking each frame). This gives the model
|
||||
# a temporal locality when handling a large number of annotated frames (since closer frames should be more important) and also avoids GPU OOM.
|
||||
max_cond_frames_in_attn=-1,
|
||||
# on the first frame, whether to directly add the no-memory embedding to the image feature
|
||||
# (instead of using the transformer encoder)
|
||||
directly_add_no_mem_embed=False,
|
||||
# whether to use high-resolution feature maps in the SAM mask decoder
|
||||
use_high_res_features_in_sam=False,
|
||||
# whether to output multiple (3) masks for the first click on initial conditioning frames
|
||||
multimask_output_in_sam=False,
|
||||
# the minimum and maximum number of clicks to use multimask_output_in_sam (only relevant when `multimask_output_in_sam=True`;
|
||||
# default is 1 for both, meaning that only the first click gives multimask output; also note that a box counts as two points)
|
||||
multimask_min_pt_num=1,
|
||||
multimask_max_pt_num=1,
|
||||
# whether to also use multimask output for tracking (not just for the first click on initial conditioning frames; only relevant when `multimask_output_in_sam=True`)
|
||||
multimask_output_for_tracking=False,
|
||||
# Whether to use multimask tokens for obj ptr; Only relevant when both
|
||||
# use_obj_ptrs_in_encoder=True and multimask_output_for_tracking=True
|
||||
use_multimask_token_for_obj_ptr: bool = False,
|
||||
# whether to use sigmoid to restrict ious prediction to [0-1]
|
||||
iou_prediction_use_sigmoid=False,
|
||||
# The memory bank's temporal stride during evaluation (i.e. the `r` parameter in XMem and Cutie; XMem and Cutie use r=5).
|
||||
# For r>1, the (self.num_maskmem - 1) non-conditioning memory frames consist of
|
||||
# (self.num_maskmem - 2) nearest frames from every r-th frames, plus the last frame.
|
||||
memory_temporal_stride_for_eval=1,
|
||||
# if `add_all_frames_to_correct_as_cond` is True, we also append to the conditioning frame list any frame that receives a later correction click
|
||||
# if `add_all_frames_to_correct_as_cond` is False, we conditioning frame list to only use those initial conditioning frames
|
||||
add_all_frames_to_correct_as_cond=False,
|
||||
# whether to apply non-overlapping constraints on the object masks in the memory encoder during evaluation (to avoid/alleviate superposing masks)
|
||||
non_overlap_masks_for_mem_enc=False,
|
||||
# whether to cross-attend to object pointers from other frames (based on SAM output tokens) in the encoder
|
||||
use_obj_ptrs_in_encoder=False,
|
||||
# the maximum number of object pointers from other frames in encoder cross attention (only relevant when `use_obj_ptrs_in_encoder=True`)
|
||||
max_obj_ptrs_in_encoder=16,
|
||||
# whether to add temporal positional encoding to the object pointers in the encoder (only relevant when `use_obj_ptrs_in_encoder=True`)
|
||||
add_tpos_enc_to_obj_ptrs=True,
|
||||
# whether to add an extra linear projection layer for the temporal positional encoding in the object pointers to avoid potential interference
|
||||
# with spatial positional encoding (only relevant when both `use_obj_ptrs_in_encoder=True` and `add_tpos_enc_to_obj_ptrs=True`)
|
||||
proj_tpos_enc_in_obj_ptrs=False,
|
||||
# whether to only attend to object pointers in the past (before the current frame) in the encoder during evaluation
|
||||
# (only relevant when `use_obj_ptrs_in_encoder=True`; this might avoid pointer information too far in the future to distract the initial tracking)
|
||||
only_obj_ptrs_in_the_past_for_eval=False,
|
||||
# Whether to predict if there is an object in the frame
|
||||
pred_obj_scores: bool = False,
|
||||
# Whether to use an MLP to predict object scores
|
||||
pred_obj_scores_mlp: bool = False,
|
||||
# Only relevant if pred_obj_scores=True and use_obj_ptrs_in_encoder=True;
|
||||
# Whether to have a fixed no obj pointer when there is no object present
|
||||
# or to use it as an additive embedding with obj_ptr produced by decoder
|
||||
fixed_no_obj_ptr: bool = False,
|
||||
# Soft no object, i.e. mix in no_obj_ptr softly,
|
||||
# hope to make recovery easier if there is a mistake and mitigate accumulation of errors
|
||||
soft_no_obj_ptr: bool = False,
|
||||
use_mlp_for_obj_ptr_proj: bool = False,
|
||||
# extra arguments used to construct the SAM mask decoder; if not None, it should be a dict of kwargs to be passed into `MaskDecoder` class.
|
||||
sam_mask_decoder_extra_args=None,
|
||||
compile_image_encoder: bool = False,
|
||||
):
|
||||
"""Initializes SAM2Model model with image encoder, memory attention, and memory encoder components."""
|
||||
super().__init__()
|
||||
|
||||
# Part 1: the image backbone
|
||||
self.image_encoder = image_encoder
|
||||
# Use level 0, 1, 2 for high-res setting, or just level 2 for the default setting
|
||||
self.use_high_res_features_in_sam = use_high_res_features_in_sam
|
||||
self.num_feature_levels = 3 if use_high_res_features_in_sam else 1
|
||||
self.use_obj_ptrs_in_encoder = use_obj_ptrs_in_encoder
|
||||
self.max_obj_ptrs_in_encoder = max_obj_ptrs_in_encoder
|
||||
if use_obj_ptrs_in_encoder:
|
||||
# A conv layer to downsample the mask prompt to stride 4 (the same stride as
|
||||
# low-res SAM mask logits) and to change its scales from 0~1 to SAM logit scale,
|
||||
# so that it can be fed into the SAM mask decoder to generate a pointer.
|
||||
self.mask_downsample = torch.nn.Conv2d(1, 1, kernel_size=4, stride=4)
|
||||
self.add_tpos_enc_to_obj_ptrs = add_tpos_enc_to_obj_ptrs
|
||||
if proj_tpos_enc_in_obj_ptrs:
|
||||
assert add_tpos_enc_to_obj_ptrs # these options need to be used together
|
||||
self.proj_tpos_enc_in_obj_ptrs = proj_tpos_enc_in_obj_ptrs
|
||||
self.only_obj_ptrs_in_the_past_for_eval = only_obj_ptrs_in_the_past_for_eval
|
||||
|
||||
# Part 2: memory attention to condition current frame's visual features
|
||||
# with memories (and obj ptrs) from past frames
|
||||
self.memory_attention = memory_attention
|
||||
self.hidden_dim = memory_attention.d_model
|
||||
|
||||
# Part 3: memory encoder for the previous frame's outputs
|
||||
self.memory_encoder = memory_encoder
|
||||
self.mem_dim = self.hidden_dim
|
||||
if hasattr(self.memory_encoder, "out_proj") and hasattr(self.memory_encoder.out_proj, "weight"):
|
||||
# if there is compression of memories along channel dim
|
||||
self.mem_dim = self.memory_encoder.out_proj.weight.shape[0]
|
||||
self.num_maskmem = num_maskmem # Number of memories accessible
|
||||
# Temporal encoding of the memories
|
||||
self.maskmem_tpos_enc = torch.nn.Parameter(torch.zeros(num_maskmem, 1, 1, self.mem_dim))
|
||||
trunc_normal_(self.maskmem_tpos_enc, std=0.02)
|
||||
# a single token to indicate no memory embedding from previous frames
|
||||
self.no_mem_embed = torch.nn.Parameter(torch.zeros(1, 1, self.hidden_dim))
|
||||
self.no_mem_pos_enc = torch.nn.Parameter(torch.zeros(1, 1, self.hidden_dim))
|
||||
trunc_normal_(self.no_mem_embed, std=0.02)
|
||||
trunc_normal_(self.no_mem_pos_enc, std=0.02)
|
||||
self.directly_add_no_mem_embed = directly_add_no_mem_embed
|
||||
# Apply sigmoid to the output raw mask logits (to turn them from
|
||||
# range (-inf, +inf) to range (0, 1)) before feeding them into the memory encoder
|
||||
self.sigmoid_scale_for_mem_enc = sigmoid_scale_for_mem_enc
|
||||
self.sigmoid_bias_for_mem_enc = sigmoid_bias_for_mem_enc
|
||||
self.binarize_mask_from_pts_for_mem_enc = binarize_mask_from_pts_for_mem_enc
|
||||
self.non_overlap_masks_for_mem_enc = non_overlap_masks_for_mem_enc
|
||||
self.memory_temporal_stride_for_eval = memory_temporal_stride_for_eval
|
||||
# On frames with mask input, whether to directly output the input mask without
|
||||
# using a SAM prompt encoder + mask decoder
|
||||
self.use_mask_input_as_output_without_sam = use_mask_input_as_output_without_sam
|
||||
self.multimask_output_in_sam = multimask_output_in_sam
|
||||
self.multimask_min_pt_num = multimask_min_pt_num
|
||||
self.multimask_max_pt_num = multimask_max_pt_num
|
||||
self.multimask_output_for_tracking = multimask_output_for_tracking
|
||||
self.use_multimask_token_for_obj_ptr = use_multimask_token_for_obj_ptr
|
||||
self.iou_prediction_use_sigmoid = iou_prediction_use_sigmoid
|
||||
|
||||
# Part 4: SAM-style prompt encoder (for both mask and point inputs)
|
||||
# and SAM-style mask decoder for the final mask output
|
||||
self.image_size = image_size
|
||||
self.backbone_stride = backbone_stride
|
||||
self.sam_mask_decoder_extra_args = sam_mask_decoder_extra_args
|
||||
self.pred_obj_scores = pred_obj_scores
|
||||
self.pred_obj_scores_mlp = pred_obj_scores_mlp
|
||||
self.fixed_no_obj_ptr = fixed_no_obj_ptr
|
||||
self.soft_no_obj_ptr = soft_no_obj_ptr
|
||||
if self.fixed_no_obj_ptr:
|
||||
assert self.pred_obj_scores
|
||||
assert self.use_obj_ptrs_in_encoder
|
||||
if self.pred_obj_scores and self.use_obj_ptrs_in_encoder:
|
||||
self.no_obj_ptr = torch.nn.Parameter(torch.zeros(1, self.hidden_dim))
|
||||
trunc_normal_(self.no_obj_ptr, std=0.02)
|
||||
self.use_mlp_for_obj_ptr_proj = use_mlp_for_obj_ptr_proj
|
||||
|
||||
self._build_sam_heads()
|
||||
self.add_all_frames_to_correct_as_cond = add_all_frames_to_correct_as_cond
|
||||
self.max_cond_frames_in_attn = max_cond_frames_in_attn
|
||||
|
||||
# Model compilation
|
||||
if compile_image_encoder:
|
||||
# Compile the forward function (not the full module) to allow loading checkpoints.
|
||||
print("Image encoder compilation is enabled. First forward pass will be slow.")
|
||||
self.image_encoder.forward = torch.compile(
|
||||
self.image_encoder.forward,
|
||||
mode="max-autotune",
|
||||
fullgraph=True,
|
||||
dynamic=False,
|
||||
)
|
||||
|
||||
@property
|
||||
def device(self):
|
||||
"""Returns the device on which the model's parameters are stored."""
|
||||
return next(self.parameters()).device
|
||||
|
||||
def forward(self, *args, **kwargs):
|
||||
"""Processes input frames and prompts to generate object masks and scores in video sequences."""
|
||||
raise NotImplementedError(
|
||||
"Please use the corresponding methods in SAM2VideoPredictor for inference."
|
||||
"See notebooks/video_predictor_example.ipynb for an example."
|
||||
)
|
||||
|
||||
def _build_sam_heads(self):
|
||||
"""Builds SAM-style prompt encoder and mask decoder for image segmentation tasks."""
|
||||
self.sam_prompt_embed_dim = self.hidden_dim
|
||||
self.sam_image_embedding_size = self.image_size // self.backbone_stride
|
||||
|
||||
# build PromptEncoder and MaskDecoder from SAM
|
||||
# (their hyperparameters like `mask_in_chans=16` are from SAM code)
|
||||
self.sam_prompt_encoder = PromptEncoder(
|
||||
embed_dim=self.sam_prompt_embed_dim,
|
||||
image_embedding_size=(
|
||||
self.sam_image_embedding_size,
|
||||
self.sam_image_embedding_size,
|
||||
),
|
||||
input_image_size=(self.image_size, self.image_size),
|
||||
mask_in_chans=16,
|
||||
)
|
||||
self.sam_mask_decoder = MaskDecoder(
|
||||
num_multimask_outputs=3,
|
||||
transformer=TwoWayTransformer(
|
||||
depth=2,
|
||||
embedding_dim=self.sam_prompt_embed_dim,
|
||||
mlp_dim=2048,
|
||||
num_heads=8,
|
||||
),
|
||||
transformer_dim=self.sam_prompt_embed_dim,
|
||||
iou_head_depth=3,
|
||||
iou_head_hidden_dim=256,
|
||||
use_high_res_features=self.use_high_res_features_in_sam,
|
||||
iou_prediction_use_sigmoid=self.iou_prediction_use_sigmoid,
|
||||
pred_obj_scores=self.pred_obj_scores,
|
||||
pred_obj_scores_mlp=self.pred_obj_scores_mlp,
|
||||
use_multimask_token_for_obj_ptr=self.use_multimask_token_for_obj_ptr,
|
||||
**(self.sam_mask_decoder_extra_args or {}),
|
||||
)
|
||||
if self.use_obj_ptrs_in_encoder:
|
||||
# a linear projection on SAM output tokens to turn them into object pointers
|
||||
self.obj_ptr_proj = torch.nn.Linear(self.hidden_dim, self.hidden_dim)
|
||||
if self.use_mlp_for_obj_ptr_proj:
|
||||
self.obj_ptr_proj = MLP(self.hidden_dim, self.hidden_dim, self.hidden_dim, 3)
|
||||
else:
|
||||
self.obj_ptr_proj = torch.nn.Identity()
|
||||
if self.proj_tpos_enc_in_obj_ptrs:
|
||||
# a linear projection on temporal positional encoding in object pointers to
|
||||
# avoid potential interference with spatial positional encoding
|
||||
self.obj_ptr_tpos_proj = torch.nn.Linear(self.hidden_dim, self.mem_dim)
|
||||
else:
|
||||
self.obj_ptr_tpos_proj = torch.nn.Identity()
|
||||
|
||||
def _forward_sam_heads(
|
||||
self,
|
||||
backbone_features,
|
||||
point_inputs=None,
|
||||
mask_inputs=None,
|
||||
high_res_features=None,
|
||||
multimask_output=False,
|
||||
):
|
||||
"""
|
||||
Forward SAM prompt encoders and mask heads.
|
||||
|
||||
Args:
|
||||
backbone_features (torch.Tensor): Image features with shape (B, C, H, W).
|
||||
point_inputs (Dict[str, torch.Tensor] | None): Dictionary containing point prompts.
|
||||
'point_coords': Tensor of shape (B, P, 2) with float32 dtype, containing absolute
|
||||
pixel-unit coordinates in (x, y) format for P input points.
|
||||
'point_labels': Tensor of shape (B, P) with int32 dtype, where 1 means positive clicks,
|
||||
0 means negative clicks, and -1 means padding.
|
||||
mask_inputs (torch.Tensor | None): Mask of shape (B, 1, H*16, W*16), float or bool, with the
|
||||
same spatial size as the image.
|
||||
high_res_features (List[torch.Tensor] | None): List of two feature maps with shapes
|
||||
(B, C, 4*H, 4*W) and (B, C, 2*H, 2*W) respectively, used as high-resolution feature maps
|
||||
for SAM decoder.
|
||||
multimask_output (bool): If True, output 3 candidate masks and their IoU estimates; if False,
|
||||
output only 1 mask and its IoU estimate.
|
||||
|
||||
Returns:
|
||||
(Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]):
|
||||
low_res_multimasks: Tensor of shape (B, M, H*4, W*4) with SAM output mask logits.
|
||||
high_res_multimasks: Tensor of shape (B, M, H*16, W*16) with upsampled mask logits.
|
||||
ious: Tensor of shape (B, M) with estimated IoU for each output mask.
|
||||
low_res_masks: Tensor of shape (B, 1, H*4, W*4) with best low-resolution mask.
|
||||
high_res_masks: Tensor of shape (B, 1, H*16, W*16) with best high-resolution mask.
|
||||
obj_ptr: Tensor of shape (B, C) with object pointer vector for the output mask.
|
||||
object_score_logits: Tensor of shape (B,) with object score logits.
|
||||
|
||||
Where M is 3 if multimask_output=True, and 1 if multimask_output=False.
|
||||
|
||||
Examples:
|
||||
>>> backbone_features = torch.rand(1, 256, 32, 32)
|
||||
>>> point_inputs = {"point_coords": torch.rand(1, 2, 2), "point_labels": torch.tensor([[1, 0]])}
|
||||
>>> mask_inputs = torch.rand(1, 1, 512, 512)
|
||||
>>> results = model._forward_sam_heads(backbone_features, point_inputs, mask_inputs)
|
||||
>>> low_res_multimasks, high_res_multimasks, ious, low_res_masks, high_res_masks, obj_ptr, object_score_logits = results
|
||||
"""
|
||||
B = backbone_features.size(0)
|
||||
device = backbone_features.device
|
||||
assert backbone_features.size(1) == self.sam_prompt_embed_dim
|
||||
assert backbone_features.size(2) == self.sam_image_embedding_size
|
||||
assert backbone_features.size(3) == self.sam_image_embedding_size
|
||||
|
||||
# a) Handle point prompts
|
||||
if point_inputs is not None:
|
||||
sam_point_coords = point_inputs["point_coords"]
|
||||
sam_point_labels = point_inputs["point_labels"]
|
||||
assert sam_point_coords.size(0) == B and sam_point_labels.size(0) == B
|
||||
else:
|
||||
# If no points are provide, pad with an empty point (with label -1)
|
||||
sam_point_coords = torch.zeros(B, 1, 2, device=device)
|
||||
sam_point_labels = -torch.ones(B, 1, dtype=torch.int32, device=device)
|
||||
|
||||
# b) Handle mask prompts
|
||||
if mask_inputs is not None:
|
||||
# If mask_inputs is provided, downsize it into low-res mask input if needed
|
||||
# and feed it as a dense mask prompt into the SAM mask encoder
|
||||
assert len(mask_inputs.shape) == 4 and mask_inputs.shape[:2] == (B, 1)
|
||||
if mask_inputs.shape[-2:] != self.sam_prompt_encoder.mask_input_size:
|
||||
sam_mask_prompt = F.interpolate(
|
||||
mask_inputs.float(),
|
||||
size=self.sam_prompt_encoder.mask_input_size,
|
||||
align_corners=False,
|
||||
mode="bilinear",
|
||||
antialias=True, # use antialias for downsampling
|
||||
)
|
||||
else:
|
||||
sam_mask_prompt = mask_inputs
|
||||
else:
|
||||
# Otherwise, simply feed None (and SAM's prompt encoder will add
|
||||
# a learned `no_mask_embed` to indicate no mask input in this case).
|
||||
sam_mask_prompt = None
|
||||
|
||||
sparse_embeddings, dense_embeddings = self.sam_prompt_encoder(
|
||||
points=(sam_point_coords, sam_point_labels),
|
||||
boxes=None,
|
||||
masks=sam_mask_prompt,
|
||||
)
|
||||
(
|
||||
low_res_multimasks,
|
||||
ious,
|
||||
sam_output_tokens,
|
||||
object_score_logits,
|
||||
) = self.sam_mask_decoder(
|
||||
image_embeddings=backbone_features,
|
||||
image_pe=self.sam_prompt_encoder.get_dense_pe(),
|
||||
sparse_prompt_embeddings=sparse_embeddings,
|
||||
dense_prompt_embeddings=dense_embeddings,
|
||||
multimask_output=multimask_output,
|
||||
repeat_image=False, # the image is already batched
|
||||
high_res_features=high_res_features,
|
||||
)
|
||||
if self.pred_obj_scores:
|
||||
is_obj_appearing = object_score_logits > 0
|
||||
|
||||
# Mask used for spatial memories is always a *hard* choice between obj and no obj,
|
||||
# consistent with the actual mask prediction
|
||||
low_res_multimasks = torch.where(
|
||||
is_obj_appearing[:, None, None],
|
||||
low_res_multimasks,
|
||||
NO_OBJ_SCORE,
|
||||
)
|
||||
|
||||
# convert masks from possibly bfloat16 (or float16) to float32
|
||||
# (older PyTorch versions before 2.1 don't support `interpolate` on bf16)
|
||||
low_res_multimasks = low_res_multimasks.float()
|
||||
high_res_multimasks = F.interpolate(
|
||||
low_res_multimasks,
|
||||
size=(self.image_size, self.image_size),
|
||||
mode="bilinear",
|
||||
align_corners=False,
|
||||
)
|
||||
|
||||
sam_output_token = sam_output_tokens[:, 0]
|
||||
if multimask_output:
|
||||
# take the best mask prediction (with the highest IoU estimation)
|
||||
best_iou_inds = torch.argmax(ious, dim=-1)
|
||||
batch_inds = torch.arange(B, device=device)
|
||||
low_res_masks = low_res_multimasks[batch_inds, best_iou_inds].unsqueeze(1)
|
||||
high_res_masks = high_res_multimasks[batch_inds, best_iou_inds].unsqueeze(1)
|
||||
if sam_output_tokens.size(1) > 1:
|
||||
sam_output_token = sam_output_tokens[batch_inds, best_iou_inds]
|
||||
else:
|
||||
low_res_masks, high_res_masks = low_res_multimasks, high_res_multimasks
|
||||
|
||||
# Extract object pointer from the SAM output token (with occlusion handling)
|
||||
obj_ptr = self.obj_ptr_proj(sam_output_token)
|
||||
if self.pred_obj_scores:
|
||||
# Allow *soft* no obj ptr, unlike for masks
|
||||
if self.soft_no_obj_ptr:
|
||||
# Only hard possible with gt
|
||||
assert not self.teacher_force_obj_scores_for_mem
|
||||
lambda_is_obj_appearing = object_score_logits.sigmoid()
|
||||
else:
|
||||
lambda_is_obj_appearing = is_obj_appearing.float()
|
||||
|
||||
if self.fixed_no_obj_ptr:
|
||||
obj_ptr = lambda_is_obj_appearing * obj_ptr
|
||||
obj_ptr = obj_ptr + (1 - lambda_is_obj_appearing) * self.no_obj_ptr
|
||||
|
||||
return (
|
||||
low_res_multimasks,
|
||||
high_res_multimasks,
|
||||
ious,
|
||||
low_res_masks,
|
||||
high_res_masks,
|
||||
obj_ptr,
|
||||
object_score_logits,
|
||||
)
|
||||
|
||||
def _use_mask_as_output(self, backbone_features, high_res_features, mask_inputs):
|
||||
"""Processes mask inputs to generate output mask logits and object pointers without using SAM."""
|
||||
# Use -10/+10 as logits for neg/pos pixels (very close to 0/1 in prob after sigmoid).
|
||||
out_scale, out_bias = 20.0, -10.0 # sigmoid(-10.0)=4.5398e-05
|
||||
mask_inputs_float = mask_inputs.float()
|
||||
high_res_masks = mask_inputs_float * out_scale + out_bias
|
||||
low_res_masks = F.interpolate(
|
||||
high_res_masks,
|
||||
size=(high_res_masks.size(-2) // 4, high_res_masks.size(-1) // 4),
|
||||
align_corners=False,
|
||||
mode="bilinear",
|
||||
antialias=True, # use antialias for downsampling
|
||||
)
|
||||
# a dummy IoU prediction of all 1's under mask input
|
||||
ious = mask_inputs.new_ones(mask_inputs.size(0), 1).float()
|
||||
if not self.use_obj_ptrs_in_encoder:
|
||||
# all zeros as a dummy object pointer (of shape [B, C])
|
||||
obj_ptr = torch.zeros(mask_inputs.size(0), self.hidden_dim, device=mask_inputs.device)
|
||||
else:
|
||||
# produce an object pointer using the SAM decoder from the mask input
|
||||
_, _, _, _, _, obj_ptr, _ = self._forward_sam_heads(
|
||||
backbone_features=backbone_features,
|
||||
mask_inputs=self.mask_downsample(mask_inputs_float),
|
||||
high_res_features=high_res_features,
|
||||
)
|
||||
# In this method, we are treating mask_input as output, e.g. using it directly to create spatial mem;
|
||||
# Below, we follow the same design axiom to use mask_input to decide if obj appears or not instead of relying
|
||||
# on the object_scores from the SAM decoder.
|
||||
is_obj_appearing = torch.any(mask_inputs.flatten(1).float() > 0.0, dim=1)
|
||||
is_obj_appearing = is_obj_appearing[..., None]
|
||||
lambda_is_obj_appearing = is_obj_appearing.float()
|
||||
object_score_logits = out_scale * lambda_is_obj_appearing + out_bias
|
||||
if self.pred_obj_scores:
|
||||
if self.fixed_no_obj_ptr:
|
||||
obj_ptr = lambda_is_obj_appearing * obj_ptr
|
||||
obj_ptr = obj_ptr + (1 - lambda_is_obj_appearing) * self.no_obj_ptr
|
||||
|
||||
return (
|
||||
low_res_masks,
|
||||
high_res_masks,
|
||||
ious,
|
||||
low_res_masks,
|
||||
high_res_masks,
|
||||
obj_ptr,
|
||||
object_score_logits,
|
||||
)
|
||||
|
||||
def forward_image(self, img_batch: torch.Tensor):
|
||||
"""Process image batch through encoder to extract multi-level features for SAM model."""
|
||||
backbone_out = self.image_encoder(img_batch)
|
||||
if self.use_high_res_features_in_sam:
|
||||
# precompute projected level 0 and level 1 features in SAM decoder
|
||||
# to avoid running it again on every SAM click
|
||||
backbone_out["backbone_fpn"][0] = self.sam_mask_decoder.conv_s0(backbone_out["backbone_fpn"][0])
|
||||
backbone_out["backbone_fpn"][1] = self.sam_mask_decoder.conv_s1(backbone_out["backbone_fpn"][1])
|
||||
return backbone_out
|
||||
|
||||
def _prepare_backbone_features(self, backbone_out):
|
||||
"""Prepare and flatten visual features from the image backbone output."""
|
||||
backbone_out = backbone_out.copy()
|
||||
assert len(backbone_out["backbone_fpn"]) == len(backbone_out["vision_pos_enc"])
|
||||
assert len(backbone_out["backbone_fpn"]) >= self.num_feature_levels
|
||||
|
||||
feature_maps = backbone_out["backbone_fpn"][-self.num_feature_levels :]
|
||||
vision_pos_embeds = backbone_out["vision_pos_enc"][-self.num_feature_levels :]
|
||||
|
||||
feat_sizes = [(x.shape[-2], x.shape[-1]) for x in vision_pos_embeds]
|
||||
# flatten NxCxHxW to HWxNxC
|
||||
vision_feats = [x.flatten(2).permute(2, 0, 1) for x in feature_maps]
|
||||
vision_pos_embeds = [x.flatten(2).permute(2, 0, 1) for x in vision_pos_embeds]
|
||||
|
||||
return backbone_out, vision_feats, vision_pos_embeds, feat_sizes
|
||||
|
||||
def _prepare_memory_conditioned_features(
|
||||
self,
|
||||
frame_idx,
|
||||
is_init_cond_frame,
|
||||
current_vision_feats,
|
||||
current_vision_pos_embeds,
|
||||
feat_sizes,
|
||||
output_dict,
|
||||
num_frames,
|
||||
track_in_reverse=False, # tracking in reverse time order (for demo usage)
|
||||
):
|
||||
"""Prepares memory-conditioned features by fusing current frame's visual features with previous memories."""
|
||||
B = current_vision_feats[-1].size(1) # batch size on this frame
|
||||
C = self.hidden_dim
|
||||
H, W = feat_sizes[-1] # top-level (lowest-resolution) feature size
|
||||
device = current_vision_feats[-1].device
|
||||
# The case of `self.num_maskmem == 0` below is primarily used for reproducing SAM on images.
|
||||
# In this case, we skip the fusion with any memory.
|
||||
if self.num_maskmem == 0: # Disable memory and skip fusion
|
||||
pix_feat = current_vision_feats[-1].permute(1, 2, 0).view(B, C, H, W)
|
||||
return pix_feat
|
||||
|
||||
num_obj_ptr_tokens = 0
|
||||
# Step 1: condition the visual features of the current frame on previous memories
|
||||
if not is_init_cond_frame:
|
||||
# Retrieve the memories encoded with the maskmem backbone
|
||||
to_cat_memory, to_cat_memory_pos_embed = [], []
|
||||
# Add conditioning frames's output first (all cond frames have t_pos=0 for
|
||||
# when getting temporal positional embedding below)
|
||||
assert len(output_dict["cond_frame_outputs"]) > 0
|
||||
# Select a maximum number of temporally closest cond frames for cross attention
|
||||
cond_outputs = output_dict["cond_frame_outputs"]
|
||||
selected_cond_outputs, unselected_cond_outputs = select_closest_cond_frames(
|
||||
frame_idx, cond_outputs, self.max_cond_frames_in_attn
|
||||
)
|
||||
t_pos_and_prevs = [(0, out) for out in selected_cond_outputs.values()]
|
||||
# Add last (self.num_maskmem - 1) frames before current frame for non-conditioning memory
|
||||
# the earliest one has t_pos=1 and the latest one has t_pos=self.num_maskmem-1
|
||||
# We also allow taking the memory frame non-consecutively (with r>1), in which case
|
||||
# we take (self.num_maskmem - 2) frames among every r-th frames plus the last frame.
|
||||
r = self.memory_temporal_stride_for_eval
|
||||
for t_pos in range(1, self.num_maskmem):
|
||||
t_rel = self.num_maskmem - t_pos # how many frames before current frame
|
||||
if t_rel == 1:
|
||||
# for t_rel == 1, we take the last frame (regardless of r)
|
||||
if not track_in_reverse:
|
||||
# the frame immediately before this frame (i.e. frame_idx - 1)
|
||||
prev_frame_idx = frame_idx - t_rel
|
||||
else:
|
||||
# the frame immediately after this frame (i.e. frame_idx + 1)
|
||||
prev_frame_idx = frame_idx + t_rel
|
||||
else:
|
||||
# for t_rel >= 2, we take the memory frame from every r-th frames
|
||||
if not track_in_reverse:
|
||||
# first find the nearest frame among every r-th frames before this frame
|
||||
# for r=1, this would be (frame_idx - 2)
|
||||
prev_frame_idx = ((frame_idx - 2) // r) * r
|
||||
# then seek further among every r-th frames
|
||||
prev_frame_idx = prev_frame_idx - (t_rel - 2) * r
|
||||
else:
|
||||
# first find the nearest frame among every r-th frames after this frame
|
||||
# for r=1, this would be (frame_idx + 2)
|
||||
prev_frame_idx = -(-(frame_idx + 2) // r) * r
|
||||
# then seek further among every r-th frames
|
||||
prev_frame_idx = prev_frame_idx + (t_rel - 2) * r
|
||||
out = output_dict["non_cond_frame_outputs"].get(prev_frame_idx, None)
|
||||
if out is None:
|
||||
# If an unselected conditioning frame is among the last (self.num_maskmem - 1)
|
||||
# frames, we still attend to it as if it's a non-conditioning frame.
|
||||
out = unselected_cond_outputs.get(prev_frame_idx, None)
|
||||
t_pos_and_prevs.append((t_pos, out))
|
||||
|
||||
for t_pos, prev in t_pos_and_prevs:
|
||||
if prev is None:
|
||||
continue # skip padding frames
|
||||
# "maskmem_features" might have been offloaded to CPU in demo use cases,
|
||||
# so we load it back to GPU (it's a no-op if it's already on GPU).
|
||||
feats = prev["maskmem_features"].cuda(non_blocking=True)
|
||||
to_cat_memory.append(feats.flatten(2).permute(2, 0, 1))
|
||||
# Spatial positional encoding (it might have been offloaded to CPU in eval)
|
||||
maskmem_enc = prev["maskmem_pos_enc"][-1].cuda()
|
||||
maskmem_enc = maskmem_enc.flatten(2).permute(2, 0, 1)
|
||||
# Temporal positional encoding
|
||||
maskmem_enc = maskmem_enc + self.maskmem_tpos_enc[self.num_maskmem - t_pos - 1]
|
||||
to_cat_memory_pos_embed.append(maskmem_enc)
|
||||
|
||||
# Construct the list of past object pointers
|
||||
if self.use_obj_ptrs_in_encoder:
|
||||
max_obj_ptrs_in_encoder = min(num_frames, self.max_obj_ptrs_in_encoder)
|
||||
# First add those object pointers from selected conditioning frames
|
||||
# (optionally, only include object pointers in the past during evaluation)
|
||||
if not self.training and self.only_obj_ptrs_in_the_past_for_eval:
|
||||
ptr_cond_outputs = {
|
||||
t: out
|
||||
for t, out in selected_cond_outputs.items()
|
||||
if (t >= frame_idx if track_in_reverse else t <= frame_idx)
|
||||
}
|
||||
else:
|
||||
ptr_cond_outputs = selected_cond_outputs
|
||||
pos_and_ptrs = [
|
||||
# Temporal pos encoding contains how far away each pointer is from current frame
|
||||
(abs(frame_idx - t), out["obj_ptr"])
|
||||
for t, out in ptr_cond_outputs.items()
|
||||
]
|
||||
# Add up to (max_obj_ptrs_in_encoder - 1) non-conditioning frames before current frame
|
||||
for t_diff in range(1, max_obj_ptrs_in_encoder):
|
||||
t = frame_idx + t_diff if track_in_reverse else frame_idx - t_diff
|
||||
if t < 0 or (num_frames is not None and t >= num_frames):
|
||||
break
|
||||
out = output_dict["non_cond_frame_outputs"].get(t, unselected_cond_outputs.get(t, None))
|
||||
if out is not None:
|
||||
pos_and_ptrs.append((t_diff, out["obj_ptr"]))
|
||||
# If we have at least one object pointer, add them to the across attention
|
||||
if len(pos_and_ptrs) > 0:
|
||||
pos_list, ptrs_list = zip(*pos_and_ptrs)
|
||||
# stack object pointers along dim=0 into [ptr_seq_len, B, C] shape
|
||||
obj_ptrs = torch.stack(ptrs_list, dim=0)
|
||||
# a temporal positional embedding based on how far each object pointer is from
|
||||
# the current frame (sine embedding normalized by the max pointer num).
|
||||
if self.add_tpos_enc_to_obj_ptrs:
|
||||
t_diff_max = max_obj_ptrs_in_encoder - 1
|
||||
tpos_dim = C if self.proj_tpos_enc_in_obj_ptrs else self.mem_dim
|
||||
obj_pos = torch.tensor(pos_list, device=device)
|
||||
obj_pos = get_1d_sine_pe(obj_pos / t_diff_max, dim=tpos_dim)
|
||||
obj_pos = self.obj_ptr_tpos_proj(obj_pos)
|
||||
obj_pos = obj_pos.unsqueeze(1).expand(-1, B, self.mem_dim)
|
||||
else:
|
||||
obj_pos = obj_ptrs.new_zeros(len(pos_list), B, self.mem_dim)
|
||||
if self.mem_dim < C:
|
||||
# split a pointer into (C // self.mem_dim) tokens for self.mem_dim < C
|
||||
obj_ptrs = obj_ptrs.reshape(-1, B, C // self.mem_dim, self.mem_dim)
|
||||
obj_ptrs = obj_ptrs.permute(0, 2, 1, 3).flatten(0, 1)
|
||||
obj_pos = obj_pos.repeat_interleave(C // self.mem_dim, dim=0)
|
||||
to_cat_memory.append(obj_ptrs)
|
||||
to_cat_memory_pos_embed.append(obj_pos)
|
||||
num_obj_ptr_tokens = obj_ptrs.shape[0]
|
||||
else:
|
||||
num_obj_ptr_tokens = 0
|
||||
else:
|
||||
# for initial conditioning frames, encode them without using any previous memory
|
||||
if self.directly_add_no_mem_embed:
|
||||
# directly add no-mem embedding (instead of using the transformer encoder)
|
||||
pix_feat_with_mem = current_vision_feats[-1] + self.no_mem_embed
|
||||
pix_feat_with_mem = pix_feat_with_mem.permute(1, 2, 0).view(B, C, H, W)
|
||||
return pix_feat_with_mem
|
||||
|
||||
# Use a dummy token on the first frame (to avoid empty memory input to transformer encoder)
|
||||
to_cat_memory = [self.no_mem_embed.expand(1, B, self.mem_dim)]
|
||||
to_cat_memory_pos_embed = [self.no_mem_pos_enc.expand(1, B, self.mem_dim)]
|
||||
|
||||
# Step 2: Concatenate the memories and forward through the transformer encoder
|
||||
memory = torch.cat(to_cat_memory, dim=0)
|
||||
memory_pos_embed = torch.cat(to_cat_memory_pos_embed, dim=0)
|
||||
|
||||
pix_feat_with_mem = self.memory_attention(
|
||||
curr=current_vision_feats,
|
||||
curr_pos=current_vision_pos_embeds,
|
||||
memory=memory,
|
||||
memory_pos=memory_pos_embed,
|
||||
num_obj_ptr_tokens=num_obj_ptr_tokens,
|
||||
)
|
||||
# reshape the output (HW)BC => BCHW
|
||||
pix_feat_with_mem = pix_feat_with_mem.permute(1, 2, 0).view(B, C, H, W)
|
||||
return pix_feat_with_mem
|
||||
|
||||
def _encode_new_memory(
|
||||
self,
|
||||
current_vision_feats,
|
||||
feat_sizes,
|
||||
pred_masks_high_res,
|
||||
is_mask_from_pts,
|
||||
):
|
||||
"""Encodes the current frame's features and predicted masks into a new memory representation."""
|
||||
B = current_vision_feats[-1].size(1) # batch size on this frame
|
||||
C = self.hidden_dim
|
||||
H, W = feat_sizes[-1] # top-level (lowest-resolution) feature size
|
||||
# top-level feature, (HW)BC => BCHW
|
||||
pix_feat = current_vision_feats[-1].permute(1, 2, 0).view(B, C, H, W)
|
||||
if self.non_overlap_masks_for_mem_enc and not self.training:
|
||||
# optionally, apply non-overlapping constraints to the masks (it's applied
|
||||
# in the batch dimension and should only be used during eval, where all
|
||||
# the objects come from the same video under batch size 1).
|
||||
pred_masks_high_res = self._apply_non_overlapping_constraints(pred_masks_high_res)
|
||||
# scale the raw mask logits with a temperature before applying sigmoid
|
||||
binarize = self.binarize_mask_from_pts_for_mem_enc and is_mask_from_pts
|
||||
if binarize and not self.training:
|
||||
mask_for_mem = (pred_masks_high_res > 0).float()
|
||||
else:
|
||||
# apply sigmoid on the raw mask logits to turn them into range (0, 1)
|
||||
mask_for_mem = torch.sigmoid(pred_masks_high_res)
|
||||
# apply scale and bias terms to the sigmoid probabilities
|
||||
if self.sigmoid_scale_for_mem_enc != 1.0:
|
||||
mask_for_mem = mask_for_mem * self.sigmoid_scale_for_mem_enc
|
||||
if self.sigmoid_bias_for_mem_enc != 0.0:
|
||||
mask_for_mem = mask_for_mem + self.sigmoid_bias_for_mem_enc
|
||||
maskmem_out = self.memory_encoder(
|
||||
pix_feat,
|
||||
mask_for_mem,
|
||||
skip_mask_sigmoid=True, # sigmoid already applied
|
||||
)
|
||||
maskmem_features = maskmem_out["vision_features"]
|
||||
maskmem_pos_enc = maskmem_out["vision_pos_enc"]
|
||||
|
||||
return maskmem_features, maskmem_pos_enc
|
||||
|
||||
def track_step(
|
||||
self,
|
||||
frame_idx,
|
||||
is_init_cond_frame,
|
||||
current_vision_feats,
|
||||
current_vision_pos_embeds,
|
||||
feat_sizes,
|
||||
point_inputs,
|
||||
mask_inputs,
|
||||
output_dict,
|
||||
num_frames,
|
||||
track_in_reverse=False, # tracking in reverse time order (for demo usage)
|
||||
# Whether to run the memory encoder on the predicted masks. Sometimes we might want
|
||||
# to skip the memory encoder with `run_mem_encoder=False`. For example,
|
||||
# in demo we might call `track_step` multiple times for each user click,
|
||||
# and only encode the memory when the user finalizes their clicks. And in ablation
|
||||
# settings like SAM training on static images, we don't need the memory encoder.
|
||||
run_mem_encoder=True,
|
||||
# The previously predicted SAM mask logits (which can be fed together with new clicks in demo).
|
||||
prev_sam_mask_logits=None,
|
||||
):
|
||||
"""Performs a single tracking step, updating object masks and memory features based on current frame inputs."""
|
||||
current_out = {"point_inputs": point_inputs, "mask_inputs": mask_inputs}
|
||||
# High-resolution feature maps for the SAM head, reshape (HW)BC => BCHW
|
||||
if len(current_vision_feats) > 1:
|
||||
high_res_features = [
|
||||
x.permute(1, 2, 0).view(x.size(1), x.size(2), *s)
|
||||
for x, s in zip(current_vision_feats[:-1], feat_sizes[:-1])
|
||||
]
|
||||
else:
|
||||
high_res_features = None
|
||||
if mask_inputs is not None and self.use_mask_input_as_output_without_sam:
|
||||
# When use_mask_input_as_output_without_sam=True, we directly output the mask input
|
||||
# (see it as a GT mask) without using a SAM prompt encoder + mask decoder.
|
||||
pix_feat = current_vision_feats[-1].permute(1, 2, 0)
|
||||
pix_feat = pix_feat.view(-1, self.hidden_dim, *feat_sizes[-1])
|
||||
sam_outputs = self._use_mask_as_output(pix_feat, high_res_features, mask_inputs)
|
||||
else:
|
||||
# fused the visual feature with previous memory features in the memory bank
|
||||
pix_feat_with_mem = self._prepare_memory_conditioned_features(
|
||||
frame_idx=frame_idx,
|
||||
is_init_cond_frame=is_init_cond_frame,
|
||||
current_vision_feats=current_vision_feats[-1:],
|
||||
current_vision_pos_embeds=current_vision_pos_embeds[-1:],
|
||||
feat_sizes=feat_sizes[-1:],
|
||||
output_dict=output_dict,
|
||||
num_frames=num_frames,
|
||||
track_in_reverse=track_in_reverse,
|
||||
)
|
||||
# apply SAM-style segmentation head
|
||||
# here we might feed previously predicted low-res SAM mask logits into the SAM mask decoder,
|
||||
# e.g. in demo where such logits come from earlier interaction instead of correction sampling
|
||||
# (in this case, any `mask_inputs` shouldn't reach here as they are sent to _use_mask_as_output instead)
|
||||
if prev_sam_mask_logits is not None:
|
||||
assert point_inputs is not None and mask_inputs is None
|
||||
mask_inputs = prev_sam_mask_logits
|
||||
multimask_output = self._use_multimask(is_init_cond_frame, point_inputs)
|
||||
sam_outputs = self._forward_sam_heads(
|
||||
backbone_features=pix_feat_with_mem,
|
||||
point_inputs=point_inputs,
|
||||
mask_inputs=mask_inputs,
|
||||
high_res_features=high_res_features,
|
||||
multimask_output=multimask_output,
|
||||
)
|
||||
(
|
||||
_,
|
||||
_,
|
||||
_,
|
||||
low_res_masks,
|
||||
high_res_masks,
|
||||
obj_ptr,
|
||||
_,
|
||||
) = sam_outputs
|
||||
|
||||
current_out["pred_masks"] = low_res_masks
|
||||
current_out["pred_masks_high_res"] = high_res_masks
|
||||
current_out["obj_ptr"] = obj_ptr
|
||||
|
||||
# Finally run the memory encoder on the predicted mask to encode
|
||||
# it into a new memory feature (that can be used in future frames)
|
||||
if run_mem_encoder and self.num_maskmem > 0:
|
||||
high_res_masks_for_mem_enc = high_res_masks
|
||||
maskmem_features, maskmem_pos_enc = self._encode_new_memory(
|
||||
current_vision_feats=current_vision_feats,
|
||||
feat_sizes=feat_sizes,
|
||||
pred_masks_high_res=high_res_masks_for_mem_enc,
|
||||
is_mask_from_pts=(point_inputs is not None),
|
||||
)
|
||||
current_out["maskmem_features"] = maskmem_features
|
||||
current_out["maskmem_pos_enc"] = maskmem_pos_enc
|
||||
else:
|
||||
current_out["maskmem_features"] = None
|
||||
current_out["maskmem_pos_enc"] = None
|
||||
|
||||
return current_out
|
||||
|
||||
def _use_multimask(self, is_init_cond_frame, point_inputs):
|
||||
"""Determines whether to use multiple mask outputs in the SAM head based on configuration and inputs."""
|
||||
num_pts = 0 if point_inputs is None else point_inputs["point_labels"].size(1)
|
||||
multimask_output = (
|
||||
self.multimask_output_in_sam
|
||||
and (is_init_cond_frame or self.multimask_output_for_tracking)
|
||||
and (self.multimask_min_pt_num <= num_pts <= self.multimask_max_pt_num)
|
||||
)
|
||||
return multimask_output
|
||||
|
||||
def _apply_non_overlapping_constraints(self, pred_masks):
|
||||
"""Applies non-overlapping constraints to object masks, keeping highest scoring object at each location."""
|
||||
batch_size = pred_masks.size(0)
|
||||
if batch_size == 1:
|
||||
return pred_masks
|
||||
|
||||
device = pred_masks.device
|
||||
# "max_obj_inds": object index of the object with the highest score at each location
|
||||
max_obj_inds = torch.argmax(pred_masks, dim=0, keepdim=True)
|
||||
# "batch_obj_inds": object index of each object slice (along dim 0) in `pred_masks`
|
||||
batch_obj_inds = torch.arange(batch_size, device=device)[:, None, None, None]
|
||||
keep = max_obj_inds == batch_obj_inds
|
||||
# suppress overlapping regions' scores below -10.0 so that the foreground regions
|
||||
# don't overlap (here sigmoid(-10.0)=4.5398e-05)
|
||||
pred_masks = torch.where(keep, pred_masks, torch.clamp(pred_masks, max=-10.0))
|
||||
return pred_masks
|
||||
715
ultralytics/models/sam2/modules/sam2_blocks.py
Normal file
715
ultralytics/models/sam2/modules/sam2_blocks.py
Normal file
|
|
@ -0,0 +1,715 @@
|
|||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
|
||||
import copy
|
||||
import math
|
||||
from functools import partial
|
||||
from typing import Optional, Tuple, Type, Union
|
||||
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from torch import Tensor, nn
|
||||
|
||||
from ultralytics.models.sam.modules.transformer import (
|
||||
Attention,
|
||||
)
|
||||
from ultralytics.models.sam.modules.transformer import (
|
||||
TwoWayAttentionBlock as SAMTwoWayAttentionBlock,
|
||||
)
|
||||
from ultralytics.models.sam.modules.transformer import (
|
||||
TwoWayTransformer as SAMTwoWayTransformer,
|
||||
)
|
||||
from ultralytics.nn.modules import MLP, LayerNorm2d
|
||||
|
||||
from .utils import apply_rotary_enc, compute_axial_cis, window_partition, window_unpartition
|
||||
|
||||
|
||||
class DropPath(nn.Module):
|
||||
"""Implements stochastic depth regularization for neural networks during training."""
|
||||
|
||||
def __init__(self, drop_prob=0.0, scale_by_keep=True):
|
||||
"""Initialize DropPath module with specified drop probability and scaling option."""
|
||||
super(DropPath, self).__init__()
|
||||
self.drop_prob = drop_prob
|
||||
self.scale_by_keep = scale_by_keep
|
||||
|
||||
def forward(self, x):
|
||||
"""Applies stochastic depth to input tensor during training, with optional scaling."""
|
||||
if self.drop_prob == 0.0 or not self.training:
|
||||
return x
|
||||
keep_prob = 1 - self.drop_prob
|
||||
shape = (x.shape[0],) + (1,) * (x.ndim - 1)
|
||||
random_tensor = x.new_empty(shape).bernoulli_(keep_prob)
|
||||
if keep_prob > 0.0 and self.scale_by_keep:
|
||||
random_tensor.div_(keep_prob)
|
||||
return x * random_tensor
|
||||
|
||||
|
||||
class MaskDownSampler(nn.Module):
|
||||
"""Downsamples and embeds masks using convolutional layers and layer normalization for efficient processing."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
embed_dim=256,
|
||||
kernel_size=4,
|
||||
stride=4,
|
||||
padding=0,
|
||||
total_stride=16,
|
||||
activation=nn.GELU,
|
||||
):
|
||||
"""Initializes a mask downsampler module for progressive downsampling and channel expansion."""
|
||||
super().__init__()
|
||||
num_layers = int(math.log2(total_stride) // math.log2(stride))
|
||||
assert stride**num_layers == total_stride
|
||||
self.encoder = nn.Sequential()
|
||||
mask_in_chans, mask_out_chans = 1, 1
|
||||
for _ in range(num_layers):
|
||||
mask_out_chans = mask_in_chans * (stride**2)
|
||||
self.encoder.append(
|
||||
nn.Conv2d(
|
||||
mask_in_chans,
|
||||
mask_out_chans,
|
||||
kernel_size=kernel_size,
|
||||
stride=stride,
|
||||
padding=padding,
|
||||
)
|
||||
)
|
||||
self.encoder.append(LayerNorm2d(mask_out_chans))
|
||||
self.encoder.append(activation())
|
||||
mask_in_chans = mask_out_chans
|
||||
|
||||
self.encoder.append(nn.Conv2d(mask_out_chans, embed_dim, kernel_size=1))
|
||||
|
||||
def forward(self, x):
|
||||
"""Downsamples and encodes input mask to embed_dim channels using convolutional layers and LayerNorm2d."""
|
||||
return self.encoder(x)
|
||||
|
||||
|
||||
# Lightly adapted from ConvNext (https://github.com/facebookresearch/ConvNeXt)
|
||||
class CXBlock(nn.Module):
|
||||
"""
|
||||
ConvNeXt Block for efficient feature extraction in convolutional neural networks.
|
||||
|
||||
This block implements a modified version of the ConvNeXt architecture, offering two equivalent
|
||||
implementations for improved performance and flexibility.
|
||||
|
||||
Attributes:
|
||||
dwconv (nn.Conv2d): Depthwise convolution layer.
|
||||
norm (LayerNorm2d): Layer normalization applied to channels.
|
||||
pwconv1 (nn.Linear): First pointwise convolution implemented as a linear layer.
|
||||
act (nn.GELU): GELU activation function.
|
||||
pwconv2 (nn.Linear): Second pointwise convolution implemented as a linear layer.
|
||||
gamma (nn.Parameter | None): Learnable scale parameter for layer scaling.
|
||||
drop_path (nn.Module): DropPath layer for stochastic depth regularization.
|
||||
|
||||
Methods:
|
||||
forward: Processes the input tensor through the ConvNeXt block.
|
||||
|
||||
Examples:
|
||||
>>> import torch
|
||||
>>> x = torch.randn(1, 64, 56, 56)
|
||||
>>> block = CXBlock(dim=64, kernel_size=7, padding=3)
|
||||
>>> output = block(x)
|
||||
>>> print(output.shape)
|
||||
torch.Size([1, 64, 56, 56])
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
dim,
|
||||
kernel_size=7,
|
||||
padding=3,
|
||||
drop_path=0.0,
|
||||
layer_scale_init_value=1e-6,
|
||||
use_dwconv=True,
|
||||
):
|
||||
"""
|
||||
Initialize a ConvNeXt Block.
|
||||
|
||||
This block implements a ConvNeXt architecture with optional depthwise convolution, layer normalization,
|
||||
pointwise convolutions, and GELU activation.
|
||||
|
||||
Args:
|
||||
dim (int): Number of input channels.
|
||||
kernel_size (int): Size of the convolutional kernel. Default is 7.
|
||||
padding (int): Padding size for the convolution. Default is 3.
|
||||
drop_path (float): Stochastic depth rate. Default is 0.0.
|
||||
layer_scale_init_value (float): Initial value for Layer Scale. Default is 1e-6.
|
||||
use_dwconv (bool): Whether to use depthwise convolution. Default is True.
|
||||
|
||||
Attributes:
|
||||
dwconv (nn.Conv2d): Depthwise or standard 2D convolution layer.
|
||||
norm (LayerNorm2d): Layer normalization applied to the output of dwconv.
|
||||
pwconv1 (nn.Linear): First pointwise convolution implemented as a linear layer.
|
||||
act (nn.GELU): GELU activation function.
|
||||
pwconv2 (nn.Linear): Second pointwise convolution implemented as a linear layer.
|
||||
gamma (nn.Parameter | None): Learnable scale parameter for the residual path.
|
||||
|
||||
Examples:
|
||||
>>> block = CXBlock(dim=64, kernel_size=7, padding=3)
|
||||
>>> x = torch.randn(1, 64, 32, 32)
|
||||
>>> output = block(x)
|
||||
>>> print(output.shape)
|
||||
torch.Size([1, 64, 32, 32])
|
||||
"""
|
||||
super().__init__()
|
||||
self.dwconv = nn.Conv2d(
|
||||
dim,
|
||||
dim,
|
||||
kernel_size=kernel_size,
|
||||
padding=padding,
|
||||
groups=dim if use_dwconv else 1,
|
||||
) # depthwise conv
|
||||
self.norm = LayerNorm2d(dim, eps=1e-6)
|
||||
self.pwconv1 = nn.Linear(dim, 4 * dim) # pointwise/1x1 convs, implemented with linear layers
|
||||
self.act = nn.GELU()
|
||||
self.pwconv2 = nn.Linear(4 * dim, dim)
|
||||
self.gamma = (
|
||||
nn.Parameter(layer_scale_init_value * torch.ones((dim)), requires_grad=True)
|
||||
if layer_scale_init_value > 0
|
||||
else None
|
||||
)
|
||||
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
|
||||
|
||||
def forward(self, x):
|
||||
"""Applies ConvNeXt block operations to input tensor, including convolutions and residual connection."""
|
||||
input = x
|
||||
x = self.dwconv(x)
|
||||
x = self.norm(x)
|
||||
x = x.permute(0, 2, 3, 1) # (N, C, H, W) -> (N, H, W, C)
|
||||
x = self.pwconv1(x)
|
||||
x = self.act(x)
|
||||
x = self.pwconv2(x)
|
||||
if self.gamma is not None:
|
||||
x = self.gamma * x
|
||||
x = x.permute(0, 3, 1, 2) # (N, H, W, C) -> (N, C, H, W)
|
||||
|
||||
x = input + self.drop_path(x)
|
||||
return x
|
||||
|
||||
|
||||
class Fuser(nn.Module):
|
||||
"""
|
||||
A module for fusing features through multiple layers of a neural network.
|
||||
|
||||
This class applies a series of identical layers to an input tensor, optionally projecting the input first.
|
||||
|
||||
Attributes:
|
||||
proj (nn.Module): An optional input projection layer. Identity if no projection is needed.
|
||||
layers (nn.ModuleList): A list of identical layers to be applied sequentially.
|
||||
|
||||
Methods:
|
||||
forward: Applies the fuser to an input tensor.
|
||||
|
||||
Examples:
|
||||
>>> layer = CXBlock(dim=256)
|
||||
>>> fuser = Fuser(layer, num_layers=3, dim=256, input_projection=True)
|
||||
>>> x = torch.randn(1, 256, 32, 32)
|
||||
>>> output = fuser(x)
|
||||
>>> print(output.shape)
|
||||
torch.Size([1, 256, 32, 32])
|
||||
"""
|
||||
|
||||
def __init__(self, layer, num_layers, dim=None, input_projection=False):
|
||||
"""
|
||||
Initializes the Fuser module.
|
||||
|
||||
This module creates a sequence of identical layers and optionally applies an input projection.
|
||||
|
||||
Args:
|
||||
layer (nn.Module): The layer to be replicated in the fuser.
|
||||
num_layers (int): The number of times to replicate the layer.
|
||||
dim (int | None): The dimension for input projection, if used.
|
||||
input_projection (bool): Whether to use input projection.
|
||||
|
||||
Attributes:
|
||||
proj (nn.Module): The input projection layer, or nn.Identity if not used.
|
||||
layers (nn.ModuleList): A list of replicated layers.
|
||||
|
||||
Examples:
|
||||
>>> layer = nn.Linear(64, 64)
|
||||
>>> fuser = Fuser(layer, num_layers=3, dim=64, input_projection=True)
|
||||
>>> input_tensor = torch.randn(1, 64)
|
||||
>>> output = fuser(input_tensor)
|
||||
"""
|
||||
super().__init__()
|
||||
self.proj = nn.Identity()
|
||||
self.layers = nn.ModuleList([copy.deepcopy(layer) for _ in range(num_layers)])
|
||||
|
||||
if input_projection:
|
||||
assert dim is not None
|
||||
self.proj = nn.Conv2d(dim, dim, kernel_size=1)
|
||||
|
||||
def forward(self, x):
|
||||
"""Applies a series of layers to the input tensor, optionally projecting it first."""
|
||||
x = self.proj(x)
|
||||
for layer in self.layers:
|
||||
x = layer(x)
|
||||
return x
|
||||
|
||||
|
||||
class TwoWayAttentionBlock(SAMTwoWayAttentionBlock):
|
||||
"""
|
||||
A two-way attention block for performing self-attention and cross-attention in both directions.
|
||||
|
||||
This block extends the SAMTwoWayAttentionBlock and consists of four main components: self-attention on
|
||||
sparse inputs, cross-attention from sparse to dense inputs, an MLP block on sparse inputs, and
|
||||
cross-attention from dense to sparse inputs.
|
||||
|
||||
Attributes:
|
||||
self_attn (Attention): Self-attention layer for queries.
|
||||
norm1 (nn.LayerNorm): Layer normalization after the first attention block.
|
||||
cross_attn_token_to_image (Attention): Cross-attention layer from queries to keys.
|
||||
norm2 (nn.LayerNorm): Layer normalization after the second attention block.
|
||||
mlp (MLP): MLP block for transforming query embeddings.
|
||||
norm3 (nn.LayerNorm): Layer normalization after the MLP block.
|
||||
norm4 (nn.LayerNorm): Layer normalization after the third attention block.
|
||||
cross_attn_image_to_token (Attention): Cross-attention layer from keys to queries.
|
||||
skip_first_layer_pe (bool): Flag to skip positional encoding in the first layer.
|
||||
|
||||
Methods:
|
||||
forward: Processes input through the attention blocks and MLP.
|
||||
|
||||
Examples:
|
||||
>>> block = TwoWayAttentionBlock(embedding_dim=256, num_heads=8)
|
||||
>>> sparse_input = torch.randn(1, 100, 256)
|
||||
>>> dense_input = torch.randn(1, 256, 16, 16)
|
||||
>>> sparse_output, dense_output = block(sparse_input, dense_input)
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
embedding_dim: int,
|
||||
num_heads: int,
|
||||
mlp_dim: int = 2048,
|
||||
activation: Type[nn.Module] = nn.ReLU,
|
||||
attention_downsample_rate: int = 2,
|
||||
skip_first_layer_pe: bool = False,
|
||||
) -> None:
|
||||
"""
|
||||
Initializes a TwoWayAttentionBlock for performing self-attention and cross-attention in two directions.
|
||||
|
||||
This block consists of four main layers: self-attention on sparse inputs, cross-attention of sparse inputs
|
||||
to dense inputs, an MLP block on sparse inputs, and cross-attention of dense inputs to sparse inputs.
|
||||
|
||||
Args:
|
||||
embedding_dim (int): The channel dimension of the embeddings.
|
||||
num_heads (int): The number of heads in the attention layers.
|
||||
mlp_dim (int): The hidden dimension of the MLP block.
|
||||
activation (Type[nn.Module]): The activation function of the MLP block.
|
||||
attention_downsample_rate (int): The downsample rate for attention computations.
|
||||
skip_first_layer_pe (bool): Whether to skip the positional encoding in the first layer.
|
||||
|
||||
Attributes:
|
||||
self_attn (Attention): The self-attention layer for the queries.
|
||||
norm1 (nn.LayerNorm): Layer normalization following the first attention block.
|
||||
cross_attn_token_to_image (Attention): Cross-attention layer from queries to keys.
|
||||
norm2 (nn.LayerNorm): Layer normalization following the second attention block.
|
||||
mlp (MLP): MLP block that transforms the query embeddings.
|
||||
norm3 (nn.LayerNorm): Layer normalization following the MLP block.
|
||||
norm4 (nn.LayerNorm): Layer normalization following the third attention block.
|
||||
cross_attn_image_to_token (Attention): Cross-attention layer from keys to queries.
|
||||
skip_first_layer_pe (bool): Whether to skip the positional encoding in the first layer.
|
||||
|
||||
Examples:
|
||||
>>> block = TwoWayAttentionBlock(embedding_dim=256, num_heads=8, mlp_dim=2048)
|
||||
>>> sparse_inputs = torch.randn(1, 100, 256)
|
||||
>>> dense_inputs = torch.randn(1, 256, 32, 32)
|
||||
>>> sparse_outputs, dense_outputs = block(sparse_inputs, dense_inputs)
|
||||
"""
|
||||
super().__init__(embedding_dim, num_heads, mlp_dim, activation, attention_downsample_rate, skip_first_layer_pe)
|
||||
self.mlp = MLP(embedding_dim, mlp_dim, embedding_dim, num_layers=2, act=activation)
|
||||
|
||||
|
||||
class TwoWayTransformer(SAMTwoWayTransformer):
|
||||
"""
|
||||
A Two-Way Transformer module for simultaneous attention to image and query points.
|
||||
|
||||
This class implements a specialized transformer decoder that attends to an input image using queries with
|
||||
supplied positional embeddings. It is particularly useful for tasks like object detection, image
|
||||
segmentation, and point cloud processing.
|
||||
|
||||
Attributes:
|
||||
depth (int): Number of layers in the transformer.
|
||||
embedding_dim (int): Channel dimension for input embeddings.
|
||||
num_heads (int): Number of heads for multihead attention.
|
||||
mlp_dim (int): Internal channel dimension for the MLP block.
|
||||
layers (nn.ModuleList): List of TwoWayAttentionBlock layers comprising the transformer.
|
||||
final_attn_token_to_image (Attention): Final attention layer from queries to image.
|
||||
norm_final_attn (nn.LayerNorm): Layer normalization applied to final queries.
|
||||
|
||||
Methods:
|
||||
forward: Processes input image embeddings and query embeddings through the transformer.
|
||||
|
||||
Examples:
|
||||
>>> transformer = TwoWayTransformer(depth=5, embedding_dim=256, num_heads=8, mlp_dim=2048)
|
||||
>>> image_embedding = torch.randn(1, 256, 64, 64)
|
||||
>>> query_embedding = torch.randn(1, 100, 256)
|
||||
>>> output = transformer(image_embedding, query_embedding)
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
depth: int,
|
||||
embedding_dim: int,
|
||||
num_heads: int,
|
||||
mlp_dim: int,
|
||||
activation: Type[nn.Module] = nn.ReLU,
|
||||
attention_downsample_rate: int = 2,
|
||||
) -> None:
|
||||
"""
|
||||
Initializes a TwoWayTransformer instance.
|
||||
|
||||
This transformer decoder attends to an input image using queries with supplied positional embeddings.
|
||||
It is designed for tasks like object detection, image segmentation, and point cloud processing.
|
||||
|
||||
Args:
|
||||
depth (int): Number of layers in the transformer.
|
||||
embedding_dim (int): Channel dimension for the input embeddings.
|
||||
num_heads (int): Number of heads for multihead attention. Must divide embedding_dim.
|
||||
mlp_dim (int): Channel dimension internal to the MLP block.
|
||||
activation (Type[nn.Module]): Activation function to use in the MLP block.
|
||||
attention_downsample_rate (int): Downsampling rate for attention computations.
|
||||
|
||||
Attributes:
|
||||
depth (int): Number of layers in the transformer.
|
||||
embedding_dim (int): Channel dimension for the input embeddings.
|
||||
num_heads (int): Number of heads for multihead attention.
|
||||
mlp_dim (int): Internal channel dimension for the MLP block.
|
||||
layers (nn.ModuleList): List of TwoWayAttentionBlock layers comprising the transformer.
|
||||
final_attn_token_to_image (Attention): Final attention layer from queries to image.
|
||||
norm_final_attn (nn.LayerNorm): Layer normalization applied to the final queries.
|
||||
|
||||
Examples:
|
||||
>>> transformer = TwoWayTransformer(depth=5, embedding_dim=256, num_heads=8, mlp_dim=2048)
|
||||
>>> transformer
|
||||
TwoWayTransformer(
|
||||
(layers): ModuleList(
|
||||
(0-4): 5 x TwoWayAttentionBlock(...)
|
||||
)
|
||||
(final_attn_token_to_image): Attention(...)
|
||||
(norm_final_attn): LayerNorm(...)
|
||||
)
|
||||
"""
|
||||
super().__init__(depth, embedding_dim, num_heads, mlp_dim, activation, attention_downsample_rate)
|
||||
self.layers = nn.ModuleList()
|
||||
for i in range(depth):
|
||||
self.layers.append(
|
||||
TwoWayAttentionBlock(
|
||||
embedding_dim=embedding_dim,
|
||||
num_heads=num_heads,
|
||||
mlp_dim=mlp_dim,
|
||||
activation=activation,
|
||||
attention_downsample_rate=attention_downsample_rate,
|
||||
skip_first_layer_pe=(i == 0),
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
class RoPEAttention(Attention):
|
||||
"""Implements rotary position encoding for attention mechanisms in transformer architectures."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
*args,
|
||||
rope_theta=10000.0,
|
||||
# whether to repeat q rope to match k length
|
||||
# this is needed for cross-attention to memories
|
||||
rope_k_repeat=False,
|
||||
feat_sizes=(32, 32), # [w, h] for stride 16 feats at 512 resolution
|
||||
**kwargs,
|
||||
):
|
||||
"""Initializes RoPEAttention with rotary position encoding for attention mechanisms."""
|
||||
super().__init__(*args, **kwargs)
|
||||
|
||||
self.compute_cis = partial(compute_axial_cis, dim=self.internal_dim // self.num_heads, theta=rope_theta)
|
||||
freqs_cis = self.compute_cis(end_x=feat_sizes[0], end_y=feat_sizes[1])
|
||||
self.freqs_cis = freqs_cis
|
||||
self.rope_k_repeat = rope_k_repeat
|
||||
|
||||
def forward(self, q: Tensor, k: Tensor, v: Tensor, num_k_exclude_rope: int = 0) -> Tensor:
|
||||
"""Applies rotary position encoding and computes attention between query, key, and value tensors."""
|
||||
q = self.q_proj(q)
|
||||
k = self.k_proj(k)
|
||||
v = self.v_proj(v)
|
||||
|
||||
# Separate into heads
|
||||
q = self._separate_heads(q, self.num_heads)
|
||||
k = self._separate_heads(k, self.num_heads)
|
||||
v = self._separate_heads(v, self.num_heads)
|
||||
|
||||
# Apply rotary position encoding
|
||||
w = h = math.sqrt(q.shape[-2])
|
||||
self.freqs_cis = self.freqs_cis.to(q.device)
|
||||
if self.freqs_cis.shape[0] != q.shape[-2]:
|
||||
self.freqs_cis = self.compute_cis(end_x=w, end_y=h).to(q.device)
|
||||
if q.shape[-2] != k.shape[-2]:
|
||||
assert self.rope_k_repeat
|
||||
|
||||
num_k_rope = k.size(-2) - num_k_exclude_rope
|
||||
q, k[:, :, :num_k_rope] = apply_rotary_enc(
|
||||
q,
|
||||
k[:, :, :num_k_rope],
|
||||
freqs_cis=self.freqs_cis,
|
||||
repeat_freqs_k=self.rope_k_repeat,
|
||||
)
|
||||
|
||||
# Attention
|
||||
_, _, _, c_per_head = q.shape
|
||||
attn = q @ k.permute(0, 1, 3, 2) # B x N_heads x N_tokens x N_tokens
|
||||
attn = attn / math.sqrt(c_per_head)
|
||||
attn = torch.softmax(attn, dim=-1)
|
||||
|
||||
# Get output
|
||||
out = attn @ v
|
||||
|
||||
out = self._recombine_heads(out)
|
||||
out = self.out_proj(out)
|
||||
|
||||
return out
|
||||
|
||||
|
||||
def do_pool(x: torch.Tensor, pool: nn.Module, norm: nn.Module = None) -> torch.Tensor:
|
||||
"""Applies pooling and optional normalization to a tensor, handling permutations for spatial operations."""
|
||||
if pool is None:
|
||||
return x
|
||||
# (B, H, W, C) -> (B, C, H, W)
|
||||
x = x.permute(0, 3, 1, 2)
|
||||
x = pool(x)
|
||||
# (B, C, H', W') -> (B, H', W', C)
|
||||
x = x.permute(0, 2, 3, 1)
|
||||
if norm:
|
||||
x = norm(x)
|
||||
|
||||
return x
|
||||
|
||||
|
||||
class MultiScaleAttention(nn.Module):
|
||||
"""Implements multi-scale self-attention with optional query pooling for efficient feature extraction."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
dim: int,
|
||||
dim_out: int,
|
||||
num_heads: int,
|
||||
q_pool: nn.Module = None,
|
||||
):
|
||||
"""Initializes a multi-scale attention module with configurable query pooling and linear projections."""
|
||||
super().__init__()
|
||||
|
||||
self.dim = dim
|
||||
self.dim_out = dim_out
|
||||
|
||||
self.num_heads = num_heads
|
||||
head_dim = dim_out // num_heads
|
||||
self.scale = head_dim**-0.5
|
||||
|
||||
self.q_pool = q_pool
|
||||
self.qkv = nn.Linear(dim, dim_out * 3)
|
||||
self.proj = nn.Linear(dim_out, dim_out)
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
"""Applies multi-scale attention to input tensor, optionally downsampling query features."""
|
||||
B, H, W, _ = x.shape
|
||||
# qkv with shape (B, H * W, 3, nHead, C)
|
||||
qkv = self.qkv(x).reshape(B, H * W, 3, self.num_heads, -1)
|
||||
# q, k, v with shape (B, H * W, nheads, C)
|
||||
q, k, v = torch.unbind(qkv, 2)
|
||||
|
||||
# Q pooling (for downsample at stage changes)
|
||||
if self.q_pool:
|
||||
q = do_pool(q.reshape(B, H, W, -1), self.q_pool)
|
||||
H, W = q.shape[1:3] # downsampled shape
|
||||
q = q.reshape(B, H * W, self.num_heads, -1)
|
||||
|
||||
# Torch's SDPA expects [B, nheads, H*W, C] so we transpose
|
||||
x = F.scaled_dot_product_attention(
|
||||
q.transpose(1, 2),
|
||||
k.transpose(1, 2),
|
||||
v.transpose(1, 2),
|
||||
)
|
||||
# Transpose back
|
||||
x = x.transpose(1, 2)
|
||||
x = x.reshape(B, H, W, -1)
|
||||
|
||||
x = self.proj(x)
|
||||
|
||||
return x
|
||||
|
||||
|
||||
class MultiScaleBlock(nn.Module):
|
||||
"""Multiscale attention block with window partitioning and query pooling for efficient vision transformers."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
dim: int,
|
||||
dim_out: int,
|
||||
num_heads: int,
|
||||
mlp_ratio: float = 4.0,
|
||||
drop_path: float = 0.0,
|
||||
norm_layer: Union[nn.Module, str] = "LayerNorm",
|
||||
q_stride: Tuple[int, int] = None,
|
||||
act_layer: nn.Module = nn.GELU,
|
||||
window_size: int = 0,
|
||||
):
|
||||
"""Initializes a multi-scale attention block with optional window partitioning and downsampling."""
|
||||
super().__init__()
|
||||
|
||||
if isinstance(norm_layer, str):
|
||||
norm_layer = partial(getattr(nn, norm_layer), eps=1e-6)
|
||||
|
||||
self.dim = dim
|
||||
self.dim_out = dim_out
|
||||
self.norm1 = norm_layer(dim)
|
||||
|
||||
self.window_size = window_size
|
||||
|
||||
self.pool, self.q_stride = None, q_stride
|
||||
if self.q_stride:
|
||||
self.pool = nn.MaxPool2d(kernel_size=q_stride, stride=q_stride, ceil_mode=False)
|
||||
|
||||
self.attn = MultiScaleAttention(
|
||||
dim,
|
||||
dim_out,
|
||||
num_heads=num_heads,
|
||||
q_pool=self.pool,
|
||||
)
|
||||
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
|
||||
|
||||
self.norm2 = norm_layer(dim_out)
|
||||
self.mlp = MLP(
|
||||
dim_out,
|
||||
int(dim_out * mlp_ratio),
|
||||
dim_out,
|
||||
num_layers=2,
|
||||
act=act_layer,
|
||||
)
|
||||
|
||||
if dim != dim_out:
|
||||
self.proj = nn.Linear(dim, dim_out)
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
"""Applies multi-scale attention and MLP processing to input tensor, with optional windowing."""
|
||||
shortcut = x # B, H, W, C
|
||||
x = self.norm1(x)
|
||||
|
||||
# Skip connection
|
||||
if self.dim != self.dim_out:
|
||||
shortcut = do_pool(self.proj(x), self.pool)
|
||||
|
||||
# Window partition
|
||||
window_size = self.window_size
|
||||
if window_size > 0:
|
||||
H, W = x.shape[1], x.shape[2]
|
||||
x, pad_hw = window_partition(x, window_size)
|
||||
|
||||
# Window Attention + Q Pooling (if stage change)
|
||||
x = self.attn(x)
|
||||
if self.q_stride:
|
||||
# Shapes have changed due to Q pooling
|
||||
window_size = self.window_size // self.q_stride[0]
|
||||
H, W = shortcut.shape[1:3]
|
||||
|
||||
pad_h = (window_size - H % window_size) % window_size
|
||||
pad_w = (window_size - W % window_size) % window_size
|
||||
pad_hw = (H + pad_h, W + pad_w)
|
||||
|
||||
# Reverse window partition
|
||||
if self.window_size > 0:
|
||||
x = window_unpartition(x, window_size, pad_hw, (H, W))
|
||||
|
||||
x = shortcut + self.drop_path(x)
|
||||
# MLP
|
||||
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
||||
return x
|
||||
|
||||
|
||||
class PositionEmbeddingSine(nn.Module):
|
||||
"""Generates sinusoidal positional embeddings for 2D inputs like images."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
num_pos_feats,
|
||||
temperature: int = 10000,
|
||||
normalize: bool = True,
|
||||
scale: Optional[float] = None,
|
||||
):
|
||||
"""Initializes sinusoidal position embeddings for 2D image inputs."""
|
||||
super().__init__()
|
||||
assert num_pos_feats % 2 == 0, "Expecting even model width"
|
||||
self.num_pos_feats = num_pos_feats // 2
|
||||
self.temperature = temperature
|
||||
self.normalize = normalize
|
||||
if scale is not None and normalize is False:
|
||||
raise ValueError("normalize should be True if scale is passed")
|
||||
if scale is None:
|
||||
scale = 2 * math.pi
|
||||
self.scale = scale
|
||||
|
||||
self.cache = {}
|
||||
|
||||
def _encode_xy(self, x, y):
|
||||
"""Encodes 2D positions using sine and cosine functions for positional embeddings."""
|
||||
assert len(x) == len(y) and x.ndim == y.ndim == 1
|
||||
x_embed = x * self.scale
|
||||
y_embed = y * self.scale
|
||||
|
||||
dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device)
|
||||
dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats)
|
||||
|
||||
pos_x = x_embed[:, None] / dim_t
|
||||
pos_y = y_embed[:, None] / dim_t
|
||||
pos_x = torch.stack((pos_x[:, 0::2].sin(), pos_x[:, 1::2].cos()), dim=2).flatten(1)
|
||||
pos_y = torch.stack((pos_y[:, 0::2].sin(), pos_y[:, 1::2].cos()), dim=2).flatten(1)
|
||||
return pos_x, pos_y
|
||||
|
||||
@torch.no_grad()
|
||||
def encode_boxes(self, x, y, w, h):
|
||||
"""Encodes box coordinates and dimensions into positional embeddings for object detection tasks."""
|
||||
pos_x, pos_y = self._encode_xy(x, y)
|
||||
pos = torch.cat((pos_y, pos_x, h[:, None], w[:, None]), dim=1)
|
||||
return pos
|
||||
|
||||
encode = encode_boxes # Backwards compatibility
|
||||
|
||||
@torch.no_grad()
|
||||
def encode_points(self, x, y, labels):
|
||||
"""Encodes 2D point coordinates with sinusoidal positional embeddings and appends labels."""
|
||||
(bx, nx), (by, ny), (bl, nl) = x.shape, y.shape, labels.shape
|
||||
assert bx == by and nx == ny and bx == bl and nx == nl
|
||||
pos_x, pos_y = self._encode_xy(x.flatten(), y.flatten())
|
||||
pos_x, pos_y = pos_x.reshape(bx, nx, -1), pos_y.reshape(by, ny, -1)
|
||||
pos = torch.cat((pos_y, pos_x, labels[:, :, None]), dim=2)
|
||||
return pos
|
||||
|
||||
@torch.no_grad()
|
||||
def forward(self, x: torch.Tensor):
|
||||
"""Generate sinusoidal position embeddings for 2D inputs."""
|
||||
cache_key = (x.shape[-2], x.shape[-1])
|
||||
if cache_key in self.cache:
|
||||
return self.cache[cache_key][None].repeat(x.shape[0], 1, 1, 1)
|
||||
y_embed = (
|
||||
torch.arange(1, x.shape[-2] + 1, dtype=torch.float32, device=x.device)
|
||||
.view(1, -1, 1)
|
||||
.repeat(x.shape[0], 1, x.shape[-1])
|
||||
)
|
||||
x_embed = (
|
||||
torch.arange(1, x.shape[-1] + 1, dtype=torch.float32, device=x.device)
|
||||
.view(1, 1, -1)
|
||||
.repeat(x.shape[0], x.shape[-2], 1)
|
||||
)
|
||||
|
||||
if self.normalize:
|
||||
eps = 1e-6
|
||||
y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale
|
||||
x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale
|
||||
|
||||
dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device)
|
||||
dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats)
|
||||
|
||||
pos_x = x_embed[:, :, :, None] / dim_t
|
||||
pos_y = y_embed[:, :, :, None] / dim_t
|
||||
pos_x = torch.stack((pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4).flatten(3)
|
||||
pos_y = torch.stack((pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4).flatten(3)
|
||||
pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2)
|
||||
self.cache[cache_key] = pos[0]
|
||||
return pos
|
||||
191
ultralytics/models/sam2/modules/utils.py
Normal file
191
ultralytics/models/sam2/modules/utils.py
Normal file
|
|
@ -0,0 +1,191 @@
|
|||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
|
||||
|
||||
def select_closest_cond_frames(frame_idx, cond_frame_outputs, max_cond_frame_num):
|
||||
"""
|
||||
Selects the closest conditioning frames to a given frame index.
|
||||
|
||||
Args:
|
||||
frame_idx (int): Current frame index.
|
||||
cond_frame_outputs (Dict[int, Any]): Dictionary of conditioning frame outputs keyed by frame indices.
|
||||
max_cond_frame_num (int): Maximum number of conditioning frames to select.
|
||||
|
||||
Returns:
|
||||
(Tuple[Dict[int, Any], Dict[int, Any]]): A tuple containing two dictionaries:
|
||||
- selected_outputs: Selected items from cond_frame_outputs.
|
||||
- unselected_outputs: Items not selected from cond_frame_outputs.
|
||||
|
||||
Examples:
|
||||
>>> frame_idx = 5
|
||||
>>> cond_frame_outputs = {1: 'a', 3: 'b', 7: 'c', 9: 'd'}
|
||||
>>> max_cond_frame_num = 2
|
||||
>>> selected, unselected = select_closest_cond_frames(frame_idx, cond_frame_outputs, max_cond_frame_num)
|
||||
>>> print(selected)
|
||||
{3: 'b', 7: 'c'}
|
||||
>>> print(unselected)
|
||||
{1: 'a', 9: 'd'}
|
||||
"""
|
||||
if max_cond_frame_num == -1 or len(cond_frame_outputs) <= max_cond_frame_num:
|
||||
selected_outputs = cond_frame_outputs
|
||||
unselected_outputs = {}
|
||||
else:
|
||||
assert max_cond_frame_num >= 2, "we should allow using 2+ conditioning frames"
|
||||
selected_outputs = {}
|
||||
|
||||
# the closest conditioning frame before `frame_idx` (if any)
|
||||
idx_before = max((t for t in cond_frame_outputs if t < frame_idx), default=None)
|
||||
if idx_before is not None:
|
||||
selected_outputs[idx_before] = cond_frame_outputs[idx_before]
|
||||
|
||||
# the closest conditioning frame after `frame_idx` (if any)
|
||||
idx_after = min((t for t in cond_frame_outputs if t >= frame_idx), default=None)
|
||||
if idx_after is not None:
|
||||
selected_outputs[idx_after] = cond_frame_outputs[idx_after]
|
||||
|
||||
# add other temporally closest conditioning frames until reaching a total
|
||||
# of `max_cond_frame_num` conditioning frames.
|
||||
num_remain = max_cond_frame_num - len(selected_outputs)
|
||||
inds_remain = sorted(
|
||||
(t for t in cond_frame_outputs if t not in selected_outputs),
|
||||
key=lambda x: abs(x - frame_idx),
|
||||
)[:num_remain]
|
||||
selected_outputs.update((t, cond_frame_outputs[t]) for t in inds_remain)
|
||||
unselected_outputs = {t: v for t, v in cond_frame_outputs.items() if t not in selected_outputs}
|
||||
|
||||
return selected_outputs, unselected_outputs
|
||||
|
||||
|
||||
def get_1d_sine_pe(pos_inds, dim, temperature=10000):
|
||||
"""Generates 1D sinusoidal positional embeddings for given positions and dimensions."""
|
||||
pe_dim = dim // 2
|
||||
dim_t = torch.arange(pe_dim, dtype=torch.float32, device=pos_inds.device)
|
||||
dim_t = temperature ** (2 * (dim_t // 2) / pe_dim)
|
||||
|
||||
pos_embed = pos_inds.unsqueeze(-1) / dim_t
|
||||
pos_embed = torch.cat([pos_embed.sin(), pos_embed.cos()], dim=-1)
|
||||
return pos_embed
|
||||
|
||||
|
||||
def init_t_xy(end_x: int, end_y: int):
|
||||
"""Initializes 1D and 2D coordinate tensors for a grid of size end_x by end_y."""
|
||||
t = torch.arange(end_x * end_y, dtype=torch.float32)
|
||||
t_x = (t % end_x).float()
|
||||
t_y = torch.div(t, end_x, rounding_mode="floor").float()
|
||||
return t_x, t_y
|
||||
|
||||
|
||||
def compute_axial_cis(dim: int, end_x: int, end_y: int, theta: float = 10000.0):
|
||||
"""Computes axial complex exponential positional encodings for 2D spatial positions."""
|
||||
freqs_x = 1.0 / (theta ** (torch.arange(0, dim, 4)[: (dim // 4)].float() / dim))
|
||||
freqs_y = 1.0 / (theta ** (torch.arange(0, dim, 4)[: (dim // 4)].float() / dim))
|
||||
|
||||
t_x, t_y = init_t_xy(end_x, end_y)
|
||||
freqs_x = torch.outer(t_x, freqs_x)
|
||||
freqs_y = torch.outer(t_y, freqs_y)
|
||||
freqs_cis_x = torch.polar(torch.ones_like(freqs_x), freqs_x)
|
||||
freqs_cis_y = torch.polar(torch.ones_like(freqs_y), freqs_y)
|
||||
return torch.cat([freqs_cis_x, freqs_cis_y], dim=-1)
|
||||
|
||||
|
||||
def reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor):
|
||||
"""Reshapes frequency tensor for broadcasting, ensuring compatibility with input tensor dimensions."""
|
||||
ndim = x.ndim
|
||||
assert 0 <= 1 < ndim
|
||||
assert freqs_cis.shape == (x.shape[-2], x.shape[-1])
|
||||
shape = [d if i >= ndim - 2 else 1 for i, d in enumerate(x.shape)]
|
||||
return freqs_cis.view(*shape)
|
||||
|
||||
|
||||
def apply_rotary_enc(
|
||||
xq: torch.Tensor,
|
||||
xk: torch.Tensor,
|
||||
freqs_cis: torch.Tensor,
|
||||
repeat_freqs_k: bool = False,
|
||||
):
|
||||
"""Applies rotary positional encoding to query and key tensors using complex-valued frequency components."""
|
||||
xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2))
|
||||
xk_ = torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2)) if xk.shape[-2] != 0 else None
|
||||
freqs_cis = reshape_for_broadcast(freqs_cis, xq_)
|
||||
xq_out = torch.view_as_real(xq_ * freqs_cis).flatten(3)
|
||||
if xk_ is None:
|
||||
# no keys to rotate, due to dropout
|
||||
return xq_out.type_as(xq).to(xq.device), xk
|
||||
# repeat freqs along seq_len dim to match k seq_len
|
||||
if repeat_freqs_k:
|
||||
r = xk_.shape[-2] // xq_.shape[-2]
|
||||
freqs_cis = freqs_cis.repeat(*([1] * (freqs_cis.ndim - 2)), r, 1)
|
||||
xk_out = torch.view_as_real(xk_ * freqs_cis).flatten(3)
|
||||
return xq_out.type_as(xq).to(xq.device), xk_out.type_as(xk).to(xk.device)
|
||||
|
||||
|
||||
def window_partition(x, window_size):
|
||||
"""
|
||||
Partitions input tensor into non-overlapping windows with padding if needed.
|
||||
|
||||
Args:
|
||||
x (torch.Tensor): Input tensor with shape (B, H, W, C).
|
||||
window_size (int): Size of each window.
|
||||
|
||||
Returns:
|
||||
(Tuple[torch.Tensor, Tuple[int, int]]): A tuple containing:
|
||||
- windows (torch.Tensor): Partitioned windows with shape (B * num_windows, window_size, window_size, C).
|
||||
- (Hp, Wp) (Tuple[int, int]): Padded height and width before partition.
|
||||
|
||||
Examples:
|
||||
>>> x = torch.randn(1, 16, 16, 3)
|
||||
>>> windows, (Hp, Wp) = window_partition(x, window_size=4)
|
||||
>>> print(windows.shape, Hp, Wp)
|
||||
torch.Size([16, 4, 4, 3]) 16 16
|
||||
"""
|
||||
B, H, W, C = x.shape
|
||||
|
||||
pad_h = (window_size - H % window_size) % window_size
|
||||
pad_w = (window_size - W % window_size) % window_size
|
||||
if pad_h > 0 or pad_w > 0:
|
||||
x = F.pad(x, (0, 0, 0, pad_w, 0, pad_h))
|
||||
Hp, Wp = H + pad_h, W + pad_w
|
||||
|
||||
x = x.view(B, Hp // window_size, window_size, Wp // window_size, window_size, C)
|
||||
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
|
||||
return windows, (Hp, Wp)
|
||||
|
||||
|
||||
def window_unpartition(windows, window_size, pad_hw, hw):
|
||||
"""
|
||||
Unpartitions windowed sequences into original sequences and removes padding.
|
||||
|
||||
This function reverses the windowing process, reconstructing the original input from windowed segments
|
||||
and removing any padding that was added during the windowing process.
|
||||
|
||||
Args:
|
||||
windows (torch.Tensor): Input tensor of windowed sequences with shape (B * num_windows, window_size,
|
||||
window_size, C), where B is the batch size, num_windows is the number of windows, window_size is
|
||||
the size of each window, and C is the number of channels.
|
||||
window_size (int): Size of each window.
|
||||
pad_hw (Tuple[int, int]): Padded height and width (Hp, Wp) of the input before windowing.
|
||||
hw (Tuple[int, int]): Original height and width (H, W) of the input before padding and windowing.
|
||||
|
||||
Returns:
|
||||
(torch.Tensor): Unpartitioned sequences with shape (B, H, W, C), where B is the batch size, H and W
|
||||
are the original height and width, and C is the number of channels.
|
||||
|
||||
Examples:
|
||||
>>> windows = torch.rand(32, 8, 8, 64) # 32 windows of size 8x8 with 64 channels
|
||||
>>> pad_hw = (16, 16) # Padded height and width
|
||||
>>> hw = (15, 14) # Original height and width
|
||||
>>> x = window_unpartition(windows, window_size=8, pad_hw=pad_hw, hw=hw)
|
||||
>>> print(x.shape)
|
||||
torch.Size([1, 15, 14, 64])
|
||||
"""
|
||||
Hp, Wp = pad_hw
|
||||
H, W = hw
|
||||
B = windows.shape[0] // (Hp * Wp // window_size // window_size)
|
||||
x = windows.view(B, Hp // window_size, Wp // window_size, window_size, window_size, -1)
|
||||
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, Hp, Wp, -1)
|
||||
|
||||
if Hp > H or Wp > W:
|
||||
x = x[:, :H, :W, :].contiguous()
|
||||
return x
|
||||
182
ultralytics/models/sam2/predict.py
Normal file
182
ultralytics/models/sam2/predict.py
Normal file
|
|
@ -0,0 +1,182 @@
|
|||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
|
||||
import torch
|
||||
|
||||
from ..sam.predict import Predictor
|
||||
from .build import build_sam2
|
||||
|
||||
|
||||
class SAM2Predictor(Predictor):
|
||||
"""
|
||||
A predictor class for the Segment Anything Model 2 (SAM2), extending the base Predictor class.
|
||||
|
||||
This class provides an interface for model inference tailored to image segmentation tasks, leveraging SAM2's
|
||||
advanced architecture and promptable segmentation capabilities. It facilitates flexible and real-time mask
|
||||
generation, working with various types of prompts such as bounding boxes, points, and low-resolution masks.
|
||||
|
||||
Attributes:
|
||||
cfg (Dict): Configuration dictionary specifying model and task-related parameters.
|
||||
overrides (Dict): Dictionary containing values that override the default configuration.
|
||||
_callbacks (Dict): Dictionary of user-defined callback functions to augment behavior.
|
||||
args (namespace): Namespace to hold command-line arguments or other operational variables.
|
||||
im (torch.Tensor): Preprocessed input image tensor.
|
||||
features (torch.Tensor): Extracted image features used for inference.
|
||||
prompts (Dict): Collection of various prompt types, such as bounding boxes and points.
|
||||
segment_all (bool): Flag to control whether to segment all objects in the image or only specified ones.
|
||||
model (torch.nn.Module): The loaded SAM2 model.
|
||||
device (torch.device): The device (CPU or GPU) on which the model is loaded.
|
||||
_bb_feat_sizes (List[Tuple[int, int]]): List of feature sizes for different backbone levels.
|
||||
|
||||
Methods:
|
||||
get_model: Builds and returns the SAM2 model.
|
||||
prompt_inference: Performs image segmentation inference based on various prompts.
|
||||
set_image: Preprocesses and sets a single image for inference.
|
||||
get_im_features: Extracts image features from the SAM2 image encoder.
|
||||
|
||||
Examples:
|
||||
>>> predictor = SAM2Predictor(model='sam2_l.pt')
|
||||
>>> predictor.set_image('path/to/image.jpg')
|
||||
>>> masks, scores = predictor.prompt_inference(im=predictor.im, points=[[500, 375]], labels=[1])
|
||||
>>> print(f"Generated {len(masks)} mask(s) with scores: {scores}")
|
||||
"""
|
||||
|
||||
_bb_feat_sizes = [
|
||||
(256, 256),
|
||||
(128, 128),
|
||||
(64, 64),
|
||||
]
|
||||
|
||||
def get_model(self):
|
||||
"""Retrieves and initializes the Segment Anything Model (SAM) for image segmentation tasks."""
|
||||
return build_sam2(self.args.model)
|
||||
|
||||
def prompt_inference(
|
||||
self,
|
||||
im,
|
||||
bboxes=None,
|
||||
points=None,
|
||||
labels=None,
|
||||
masks=None,
|
||||
multimask_output=False,
|
||||
img_idx=-1,
|
||||
):
|
||||
"""
|
||||
Performs image segmentation inference based on various prompts using SAM2 architecture.
|
||||
|
||||
Args:
|
||||
im (torch.Tensor): Preprocessed input image tensor with shape (N, C, H, W).
|
||||
bboxes (np.ndarray | List | None): Bounding boxes in XYXY format with shape (N, 4).
|
||||
points (np.ndarray | List | None): Points indicating object locations with shape (N, 2), in pixels.
|
||||
labels (np.ndarray | List | None): Labels for point prompts with shape (N,). 1 = foreground, 0 = background.
|
||||
masks (np.ndarray | None): Low-resolution masks from previous predictions with shape (N, H, W).
|
||||
multimask_output (bool): Flag to return multiple masks for ambiguous prompts.
|
||||
img_idx (int): Index of the image in the batch to process.
|
||||
|
||||
Returns:
|
||||
(tuple): Tuple containing:
|
||||
- np.ndarray: Output masks with shape (C, H, W), where C is the number of generated masks.
|
||||
- np.ndarray: Quality scores for each mask, with length C.
|
||||
- np.ndarray: Low-resolution logits with shape (C, 256, 256) for subsequent inference.
|
||||
|
||||
Examples:
|
||||
>>> predictor = SAM2Predictor(cfg)
|
||||
>>> image = torch.rand(1, 3, 640, 640)
|
||||
>>> bboxes = [[100, 100, 200, 200]]
|
||||
>>> masks, scores, logits = predictor.prompt_inference(image, bboxes=bboxes)
|
||||
"""
|
||||
features = self.get_im_features(im) if self.features is None else self.features
|
||||
|
||||
src_shape, dst_shape = self.batch[1][0].shape[:2], im.shape[2:]
|
||||
r = 1.0 if self.segment_all else min(dst_shape[0] / src_shape[0], dst_shape[1] / src_shape[1])
|
||||
# Transform input prompts
|
||||
if points is not None:
|
||||
points = torch.as_tensor(points, dtype=torch.float32, device=self.device)
|
||||
points = points[None] if points.ndim == 1 else points
|
||||
# Assuming labels are all positive if users don't pass labels.
|
||||
if labels is None:
|
||||
labels = torch.ones(points.shape[0])
|
||||
labels = torch.as_tensor(labels, dtype=torch.int32, device=self.device)
|
||||
points *= r
|
||||
# (N, 2) --> (N, 1, 2), (N, ) --> (N, 1)
|
||||
points, labels = points[:, None], labels[:, None]
|
||||
if bboxes is not None:
|
||||
bboxes = torch.as_tensor(bboxes, dtype=torch.float32, device=self.device)
|
||||
bboxes = bboxes[None] if bboxes.ndim == 1 else bboxes
|
||||
bboxes *= r
|
||||
if masks is not None:
|
||||
masks = torch.as_tensor(masks, dtype=torch.float32, device=self.device).unsqueeze(1)
|
||||
|
||||
points = (points, labels) if points is not None else None
|
||||
# TODO: Embed prompts
|
||||
# if bboxes is not None:
|
||||
# box_coords = bboxes.reshape(-1, 2, 2)
|
||||
# box_labels = torch.tensor([[2, 3]], dtype=torch.int, device=bboxes.device)
|
||||
# box_labels = box_labels.repeat(bboxes.size(0), 1)
|
||||
# # we merge "boxes" and "points" into a single "concat_points" input (where
|
||||
# # boxes are added at the beginning) to sam_prompt_encoder
|
||||
# if concat_points is not None:
|
||||
# concat_coords = torch.cat([box_coords, concat_points[0]], dim=1)
|
||||
# concat_labels = torch.cat([box_labels, concat_points[1]], dim=1)
|
||||
# concat_points = (concat_coords, concat_labels)
|
||||
# else:
|
||||
# concat_points = (box_coords, box_labels)
|
||||
|
||||
sparse_embeddings, dense_embeddings = self.model.sam_prompt_encoder(
|
||||
points=points,
|
||||
boxes=bboxes,
|
||||
masks=masks,
|
||||
)
|
||||
# Predict masks
|
||||
batched_mode = points is not None and points[0].shape[0] > 1 # multi object prediction
|
||||
high_res_features = [feat_level[img_idx].unsqueeze(0) for feat_level in features["high_res_feats"]]
|
||||
pred_masks, pred_scores, _, _ = self.model.sam_mask_decoder(
|
||||
image_embeddings=features["image_embed"][img_idx].unsqueeze(0),
|
||||
image_pe=self.model.sam_prompt_encoder.get_dense_pe(),
|
||||
sparse_prompt_embeddings=sparse_embeddings,
|
||||
dense_prompt_embeddings=dense_embeddings,
|
||||
multimask_output=multimask_output,
|
||||
repeat_image=batched_mode,
|
||||
high_res_features=high_res_features,
|
||||
)
|
||||
# (N, d, H, W) --> (N*d, H, W), (N, d) --> (N*d, )
|
||||
# `d` could be 1 or 3 depends on `multimask_output`.
|
||||
return pred_masks.flatten(0, 1), pred_scores.flatten(0, 1)
|
||||
|
||||
def set_image(self, image):
|
||||
"""
|
||||
Preprocesses and sets a single image for inference.
|
||||
|
||||
This function sets up the model if not already initialized, configures the data source to the specified image,
|
||||
and preprocesses the image for feature extraction. Only one image can be set at a time.
|
||||
|
||||
Args:
|
||||
image (str | np.ndarray): Image file path as a string, or a numpy array image read by cv2.
|
||||
|
||||
Raises:
|
||||
AssertionError: If more than one image is set.
|
||||
|
||||
Examples:
|
||||
>>> predictor = SAM2Predictor()
|
||||
>>> predictor.set_image("path/to/image.jpg")
|
||||
>>> predictor.set_image(np.array([...])) # Using a numpy array
|
||||
"""
|
||||
if self.model is None:
|
||||
self.setup_model(model=None)
|
||||
self.setup_source(image)
|
||||
assert len(self.dataset) == 1, "`set_image` only supports setting one image!"
|
||||
for batch in self.dataset:
|
||||
im = self.preprocess(batch[1])
|
||||
self.features = self.get_im_features(im)
|
||||
break
|
||||
|
||||
def get_im_features(self, im):
|
||||
"""Extracts and processes image features using SAM2's image encoder for subsequent segmentation tasks."""
|
||||
backbone_out = self.model.forward_image(im)
|
||||
_, vision_feats, _, _ = self.model._prepare_backbone_features(backbone_out)
|
||||
if self.model.directly_add_no_mem_embed:
|
||||
vision_feats[-1] = vision_feats[-1] + self.model.no_mem_embed
|
||||
feats = [
|
||||
feat.permute(1, 2, 0).view(1, -1, *feat_size)
|
||||
for feat, feat_size in zip(vision_feats[::-1], self._bb_feat_sizes[::-1])
|
||||
][::-1]
|
||||
return {"image_embed": feats[-1], "high_res_feats": feats[:-1]}
|
||||
|
|
@ -174,18 +174,20 @@ class MLPBlock(nn.Module):
|
|||
class MLP(nn.Module):
|
||||
"""Implements a simple multi-layer perceptron (also called FFN)."""
|
||||
|
||||
def __init__(self, input_dim, hidden_dim, output_dim, num_layers):
|
||||
def __init__(self, input_dim, hidden_dim, output_dim, num_layers, act=nn.ReLU, sigmoid=False):
|
||||
"""Initialize the MLP with specified input, hidden, output dimensions and number of layers."""
|
||||
super().__init__()
|
||||
self.num_layers = num_layers
|
||||
h = [hidden_dim] * (num_layers - 1)
|
||||
self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim]))
|
||||
self.sigmoid = sigmoid
|
||||
self.act = act()
|
||||
|
||||
def forward(self, x):
|
||||
"""Forward pass for the entire MLP."""
|
||||
for i, layer in enumerate(self.layers):
|
||||
x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
|
||||
return x
|
||||
x = self.act(layer(x)) if i < self.num_layers - 1 else layer(x)
|
||||
return x.sigmoid() if self.sigmoid else x
|
||||
|
||||
|
||||
class LayerNorm2d(nn.Module):
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue