ultralytics-ascend/docs/en/guides/security-alarm-system.md
Francesco Mattioli f22d2d9546
ROS Quickstart Guide (#13553)
Co-authored-by: UltralyticsAssistant <web@ultralytics.com>
Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
2024-06-19 01:54:19 +02:00

178 lines
6.6 KiB
Markdown

---
comments: true
description: Enhance your security with real-time object detection using Ultralytics YOLOv8. Reduce false positives and integrate seamlessly with existing systems.
keywords: YOLOv8, Security Alarm System, real-time object detection, Ultralytics, computer vision, integration, false positives
---
# Security Alarm System Project Using Ultralytics YOLOv8
<img src="https://github.com/RizwanMunawar/ultralytics/assets/62513924/f4e4a613-fb25-4bd0-9ec5-78352ddb62bd" alt="Security Alarm System">
The Security Alarm System Project utilizing Ultralytics YOLOv8 integrates advanced computer vision capabilities to enhance security measures. YOLOv8, developed by Ultralytics, provides real-time object detection, allowing the system to identify and respond to potential security threats promptly. This project offers several advantages:
- **Real-time Detection:** YOLOv8's efficiency enables the Security Alarm System to detect and respond to security incidents in real-time, minimizing response time.
- **Accuracy:** YOLOv8 is known for its accuracy in object detection, reducing false positives and enhancing the reliability of the security alarm system.
- **Integration Capabilities:** The project can be seamlessly integrated with existing security infrastructure, providing an upgraded layer of intelligent surveillance.
<p align="center">
<br>
<iframe loading="lazy" width="720" height="405" src="https://www.youtube.com/embed/_1CmwUzoxY4"
title="YouTube video player" frameborder="0"
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
allowfullscreen>
</iframe>
<br>
<strong>Watch:</strong> Security Alarm System Project with Ultralytics YOLOv8 Object Detection
</p>
### Code
#### Set up the parameters of the message
???+ tip "Note"
App Password Generation is necessary
- Navigate to [App Password Generator](https://myaccount.google.com/apppasswords), designate an app name such as "security project," and obtain a 16-digit password. Copy this password and paste it into the designated password field as instructed.
```python
password = ""
from_email = "" # must match the email used to generate the password
to_email = "" # receiver email
```
#### Server creation and authentication
```python
import smtplib
server = smtplib.SMTP("smtp.gmail.com: 587")
server.starttls()
server.login(from_email, password)
```
#### Email Send Function
```python
from email.mime.multipart import MIMEMultipart
from email.mime.text import MIMEText
def send_email(to_email, from_email, object_detected=1):
"""Sends an email notification indicating the number of objects detected; defaults to 1 object."""
message = MIMEMultipart()
message["From"] = from_email
message["To"] = to_email
message["Subject"] = "Security Alert"
# Add in the message body
message_body = f"ALERT - {object_detected} objects has been detected!!"
message.attach(MIMEText(message_body, "plain"))
server.sendmail(from_email, to_email, message.as_string())
```
#### Object Detection and Alert Sender
```python
from time import time
import cv2
import torch
from ultralytics import YOLO
from ultralytics.utils.plotting import Annotator, colors
class ObjectDetection:
def __init__(self, capture_index):
"""Initializes an ObjectDetection instance with a given camera index."""
self.capture_index = capture_index
self.email_sent = False
# model information
self.model = YOLO("yolov8n.pt")
# visual information
self.annotator = None
self.start_time = 0
self.end_time = 0
# device information
self.device = "cuda" if torch.cuda.is_available() else "cpu"
def predict(self, im0):
"""Run prediction using a YOLO model for the input image `im0`."""
results = self.model(im0)
return results
def display_fps(self, im0):
"""Displays the FPS on an image `im0` by calculating and overlaying as white text on a black rectangle."""
self.end_time = time()
fps = 1 / round(self.end_time - self.start_time, 2)
text = f"FPS: {int(fps)}"
text_size = cv2.getTextSize(text, cv2.FONT_HERSHEY_SIMPLEX, 1.0, 2)[0]
gap = 10
cv2.rectangle(
im0,
(20 - gap, 70 - text_size[1] - gap),
(20 + text_size[0] + gap, 70 + gap),
(255, 255, 255),
-1,
)
cv2.putText(im0, text, (20, 70), cv2.FONT_HERSHEY_SIMPLEX, 1.0, (0, 0, 0), 2)
def plot_bboxes(self, results, im0):
"""Plots bounding boxes on an image given detection results; returns annotated image and class IDs."""
class_ids = []
self.annotator = Annotator(im0, 3, results[0].names)
boxes = results[0].boxes.xyxy.cpu()
clss = results[0].boxes.cls.cpu().tolist()
names = results[0].names
for box, cls in zip(boxes, clss):
class_ids.append(cls)
self.annotator.box_label(box, label=names[int(cls)], color=colors(int(cls), True))
return im0, class_ids
def __call__(self):
"""Run object detection on video frames from a camera stream, plotting and showing the results."""
cap = cv2.VideoCapture(self.capture_index)
assert cap.isOpened()
cap.set(cv2.CAP_PROP_FRAME_WIDTH, 640)
cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 480)
frame_count = 0
while True:
self.start_time = time()
ret, im0 = cap.read()
assert ret
results = self.predict(im0)
im0, class_ids = self.plot_bboxes(results, im0)
if len(class_ids) > 0: # Only send email If not sent before
if not self.email_sent:
send_email(to_email, from_email, len(class_ids))
self.email_sent = True
else:
self.email_sent = False
self.display_fps(im0)
cv2.imshow("YOLOv8 Detection", im0)
frame_count += 1
if cv2.waitKey(5) & 0xFF == 27:
break
cap.release()
cv2.destroyAllWindows()
server.quit()
```
#### Call the Object Detection class and Run the Inference
```python
detector = ObjectDetection(capture_index=0)
detector()
```
That's it! When you execute the code, you'll receive a single notification on your email if any object is detected. The notification is sent immediately, not repeatedly. However, feel free to customize the code to suit your project requirements.
#### Email Received Sample
<img width="256" src="https://github.com/RizwanMunawar/ultralytics/assets/62513924/db79ccc6-aabd-4566-a825-b34e679c90f9" alt="Email Received Sample">