ultralytics-ascend/ultralytics/models/fastsam/model.py
Glenn Jocher d27664216b
Ruff format docstring Python code (#15792)
Signed-off-by: UltralyticsAssistant <web@ultralytics.com>
Co-authored-by: UltralyticsAssistant <web@ultralytics.com>
2024-08-25 01:08:07 +08:00

52 lines
2.1 KiB
Python

# Ultralytics YOLO 🚀, AGPL-3.0 license
from pathlib import Path
from ultralytics.engine.model import Model
from .predict import FastSAMPredictor
from .val import FastSAMValidator
class FastSAM(Model):
"""
FastSAM model interface.
Example:
```python
from ultralytics import FastSAM
model = FastSAM("last.pt")
results = model.predict("ultralytics/assets/bus.jpg")
```
"""
def __init__(self, model="FastSAM-x.pt"):
"""Call the __init__ method of the parent class (YOLO) with the updated default model."""
if str(model) == "FastSAM.pt":
model = "FastSAM-x.pt"
assert Path(model).suffix not in {".yaml", ".yml"}, "FastSAM models only support pre-trained models."
super().__init__(model=model, task="segment")
def predict(self, source, stream=False, bboxes=None, points=None, labels=None, texts=None, **kwargs):
"""
Performs segmentation prediction on the given image or video source.
Args:
source (str): Path to the image or video file, or a PIL.Image object, or a numpy.ndarray object.
stream (bool, optional): If True, enables real-time streaming. Defaults to False.
bboxes (list, optional): List of bounding box coordinates for prompted segmentation. Defaults to None.
points (list, optional): List of points for prompted segmentation. Defaults to None.
labels (list, optional): List of labels for prompted segmentation. Defaults to None.
texts (list, optional): List of texts for prompted segmentation. Defaults to None.
Returns:
(list): The model predictions.
"""
prompts = dict(bboxes=bboxes, points=points, labels=labels, texts=texts)
return super().predict(source, stream, prompts=prompts, **kwargs)
@property
def task_map(self):
"""Returns a dictionary mapping segment task to corresponding predictor and validator classes."""
return {"segment": {"predictor": FastSAMPredictor, "validator": FastSAMValidator}}