Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> Co-authored-by: UltralyticsAssistant <web@ultralytics.com> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
156 lines
5.3 KiB
Python
156 lines
5.3 KiB
Python
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
|
|
|
import torch
|
|
|
|
from ultralytics.utils.downloads import attempt_download_asset
|
|
|
|
from .modules.encoders import FpnNeck, Hiera, ImageEncoder, MemoryEncoder
|
|
from .modules.memory_attention import MemoryAttention, MemoryAttentionLayer
|
|
from .modules.sam2 import SAM2Model
|
|
|
|
|
|
def build_sam2_t(checkpoint=None):
|
|
"""Build and return a Segment Anything Model (SAM2) tiny-size model with specified architecture parameters."""
|
|
return _build_sam2(
|
|
encoder_embed_dim=96,
|
|
encoder_stages=[1, 2, 7, 2],
|
|
encoder_num_heads=1,
|
|
encoder_global_att_blocks=[5, 7, 9],
|
|
encoder_window_spec=[8, 4, 14, 7],
|
|
encoder_backbone_channel_list=[768, 384, 192, 96],
|
|
checkpoint=checkpoint,
|
|
)
|
|
|
|
|
|
def build_sam2_s(checkpoint=None):
|
|
"""Builds and returns a small-size Segment Anything Model (SAM2) with specified architecture parameters."""
|
|
return _build_sam2(
|
|
encoder_embed_dim=96,
|
|
encoder_stages=[1, 2, 11, 2],
|
|
encoder_num_heads=1,
|
|
encoder_global_att_blocks=[7, 10, 13],
|
|
encoder_window_spec=[8, 4, 14, 7],
|
|
encoder_backbone_channel_list=[768, 384, 192, 96],
|
|
checkpoint=checkpoint,
|
|
)
|
|
|
|
|
|
def build_sam2_b(checkpoint=None):
|
|
"""Builds and returns a Segment Anything Model (SAM2) base-size model with specified architecture parameters."""
|
|
return _build_sam2(
|
|
encoder_embed_dim=112,
|
|
encoder_stages=[2, 3, 16, 3],
|
|
encoder_num_heads=2,
|
|
encoder_global_att_blocks=[12, 16, 20],
|
|
encoder_window_spec=[8, 4, 14, 7],
|
|
encoder_window_spatial_size=[14, 14],
|
|
encoder_backbone_channel_list=[896, 448, 224, 112],
|
|
checkpoint=checkpoint,
|
|
)
|
|
|
|
|
|
def build_sam2_l(checkpoint=None):
|
|
"""Build and return a Segment Anything Model (SAM2) large-size model with specified architecture parameters."""
|
|
return _build_sam2(
|
|
encoder_embed_dim=144,
|
|
encoder_stages=[2, 6, 36, 4],
|
|
encoder_num_heads=2,
|
|
encoder_global_att_blocks=[23, 33, 43],
|
|
encoder_window_spec=[8, 4, 16, 8],
|
|
encoder_backbone_channel_list=[1152, 576, 288, 144],
|
|
checkpoint=checkpoint,
|
|
)
|
|
|
|
|
|
def _build_sam2(
|
|
encoder_embed_dim=1280,
|
|
encoder_stages=[2, 6, 36, 4],
|
|
encoder_num_heads=2,
|
|
encoder_global_att_blocks=[7, 15, 23, 31],
|
|
encoder_backbone_channel_list=[1152, 576, 288, 144],
|
|
encoder_window_spatial_size=[7, 7],
|
|
encoder_window_spec=[8, 4, 16, 8],
|
|
checkpoint=None,
|
|
):
|
|
"""Builds a SAM2 model with specified architecture parameters and optional checkpoint loading."""
|
|
image_encoder = ImageEncoder(
|
|
trunk=Hiera(
|
|
embed_dim=encoder_embed_dim,
|
|
num_heads=encoder_num_heads,
|
|
stages=encoder_stages,
|
|
global_att_blocks=encoder_global_att_blocks,
|
|
window_pos_embed_bkg_spatial_size=encoder_window_spatial_size,
|
|
window_spec=encoder_window_spec,
|
|
),
|
|
neck=FpnNeck(
|
|
d_model=256,
|
|
backbone_channel_list=encoder_backbone_channel_list,
|
|
fpn_top_down_levels=[2, 3],
|
|
fpn_interp_model="nearest",
|
|
),
|
|
scalp=1,
|
|
)
|
|
memory_attention = MemoryAttention(d_model=256, pos_enc_at_input=True, num_layers=4, layer=MemoryAttentionLayer())
|
|
memory_encoder = MemoryEncoder(out_dim=64)
|
|
|
|
sam2 = SAM2Model(
|
|
image_encoder=image_encoder,
|
|
memory_attention=memory_attention,
|
|
memory_encoder=memory_encoder,
|
|
num_maskmem=7,
|
|
image_size=1024,
|
|
sigmoid_scale_for_mem_enc=20.0,
|
|
sigmoid_bias_for_mem_enc=-10.0,
|
|
use_mask_input_as_output_without_sam=True,
|
|
directly_add_no_mem_embed=True,
|
|
use_high_res_features_in_sam=True,
|
|
multimask_output_in_sam=True,
|
|
iou_prediction_use_sigmoid=True,
|
|
use_obj_ptrs_in_encoder=True,
|
|
add_tpos_enc_to_obj_ptrs=True,
|
|
only_obj_ptrs_in_the_past_for_eval=True,
|
|
pred_obj_scores=True,
|
|
pred_obj_scores_mlp=True,
|
|
fixed_no_obj_ptr=True,
|
|
multimask_output_for_tracking=True,
|
|
use_multimask_token_for_obj_ptr=True,
|
|
multimask_min_pt_num=0,
|
|
multimask_max_pt_num=1,
|
|
use_mlp_for_obj_ptr_proj=True,
|
|
compile_image_encoder=False,
|
|
sam_mask_decoder_extra_args=dict(
|
|
dynamic_multimask_via_stability=True,
|
|
dynamic_multimask_stability_delta=0.05,
|
|
dynamic_multimask_stability_thresh=0.98,
|
|
),
|
|
)
|
|
|
|
if checkpoint is not None:
|
|
checkpoint = attempt_download_asset(checkpoint)
|
|
with open(checkpoint, "rb") as f:
|
|
state_dict = torch.load(f)["model"]
|
|
sam2.load_state_dict(state_dict)
|
|
sam2.eval()
|
|
return sam2
|
|
|
|
|
|
sam_model_map = {
|
|
"sam2_t.pt": build_sam2_t,
|
|
"sam2_s.pt": build_sam2_s,
|
|
"sam2_b.pt": build_sam2_b,
|
|
"sam2_l.pt": build_sam2_l,
|
|
}
|
|
|
|
|
|
def build_sam2(ckpt="sam_b.pt"):
|
|
"""Constructs a Segment Anything Model (SAM2) based on the specified checkpoint, with various size options."""
|
|
model_builder = None
|
|
ckpt = str(ckpt) # to allow Path ckpt types
|
|
for k in sam_model_map.keys():
|
|
if ckpt.endswith(k):
|
|
model_builder = sam_model_map.get(k)
|
|
|
|
if not model_builder:
|
|
raise FileNotFoundError(f"{ckpt} is not a supported SAM model. Available models are: \n {sam_model_map.keys()}")
|
|
|
|
return model_builder(ckpt)
|