Reformat Markdown code blocks (#12795)

Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com>
Co-authored-by: UltralyticsAssistant <web@ultralytics.com>
This commit is contained in:
Glenn Jocher 2024-05-18 18:58:06 +02:00 committed by GitHub
parent 2af71d15a6
commit fceea033ad
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
128 changed files with 1067 additions and 1018 deletions

View file

@ -56,12 +56,12 @@ Train YOLOv8n on the COCO8 dataset for 100 epochs at image size 640. For a full
from ultralytics import YOLO
# Load a model
model = YOLO('yolov8n.yaml') # build a new model from YAML
model = YOLO('yolov8n.pt') # load a pretrained model (recommended for training)
model = YOLO('yolov8n.yaml').load('yolov8n.pt') # build from YAML and transfer weights
model = YOLO("yolov8n.yaml") # build a new model from YAML
model = YOLO("yolov8n.pt") # load a pretrained model (recommended for training)
model = YOLO("yolov8n.yaml").load("yolov8n.pt") # build from YAML and transfer weights
# Train the model
results = model.train(data='coco8.yaml', epochs=100, imgsz=640)
results = model.train(data="coco8.yaml", epochs=100, imgsz=640)
```
=== "CLI"
@ -92,15 +92,15 @@ Validate trained YOLOv8n model accuracy on the COCO8 dataset. No argument need t
from ultralytics import YOLO
# Load a model
model = YOLO('yolov8n.pt') # load an official model
model = YOLO('path/to/best.pt') # load a custom model
model = YOLO("yolov8n.pt") # load an official model
model = YOLO("path/to/best.pt") # load a custom model
# Validate the model
metrics = model.val() # no arguments needed, dataset and settings remembered
metrics.box.map # map50-95
metrics.box.map # map50-95
metrics.box.map50 # map50
metrics.box.map75 # map75
metrics.box.maps # a list contains map50-95 of each category
metrics.box.maps # a list contains map50-95 of each category
```
=== "CLI"
@ -121,11 +121,11 @@ Use a trained YOLOv8n model to run predictions on images.
from ultralytics import YOLO
# Load a model
model = YOLO('yolov8n.pt') # load an official model
model = YOLO('path/to/best.pt') # load a custom model
model = YOLO("yolov8n.pt") # load an official model
model = YOLO("path/to/best.pt") # load a custom model
# Predict with the model
results = model('https://ultralytics.com/images/bus.jpg') # predict on an image
results = model("https://ultralytics.com/images/bus.jpg") # predict on an image
```
=== "CLI"
@ -148,11 +148,11 @@ Export a YOLOv8n model to a different format like ONNX, CoreML, etc.
from ultralytics import YOLO
# Load a model
model = YOLO('yolov8n.pt') # load an official model
model = YOLO('path/to/best.pt') # load a custom trained model
model = YOLO("yolov8n.pt") # load an official model
model = YOLO("path/to/best.pt") # load a custom trained model
# Export the model
model.export(format='onnx')
model.export(format="onnx")
```
=== "CLI"