Reformat Markdown code blocks (#12795)
Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> Co-authored-by: UltralyticsAssistant <web@ultralytics.com>
This commit is contained in:
parent
2af71d15a6
commit
fceea033ad
128 changed files with 1067 additions and 1018 deletions
|
|
@ -56,12 +56,12 @@ Train YOLOv8n-cls on the MNIST160 dataset for 100 epochs at image size 64. For a
|
|||
from ultralytics import YOLO
|
||||
|
||||
# Load a model
|
||||
model = YOLO('yolov8n-cls.yaml') # build a new model from YAML
|
||||
model = YOLO('yolov8n-cls.pt') # load a pretrained model (recommended for training)
|
||||
model = YOLO('yolov8n-cls.yaml').load('yolov8n-cls.pt') # build from YAML and transfer weights
|
||||
model = YOLO("yolov8n-cls.yaml") # build a new model from YAML
|
||||
model = YOLO("yolov8n-cls.pt") # load a pretrained model (recommended for training)
|
||||
model = YOLO("yolov8n-cls.yaml").load("yolov8n-cls.pt") # build from YAML and transfer weights
|
||||
|
||||
# Train the model
|
||||
results = model.train(data='mnist160', epochs=100, imgsz=64)
|
||||
results = model.train(data="mnist160", epochs=100, imgsz=64)
|
||||
```
|
||||
|
||||
=== "CLI"
|
||||
|
|
@ -93,13 +93,13 @@ Validate trained YOLOv8n-cls model accuracy on the MNIST160 dataset. No argument
|
|||
from ultralytics import YOLO
|
||||
|
||||
# Load a model
|
||||
model = YOLO('yolov8n-cls.pt') # load an official model
|
||||
model = YOLO('path/to/best.pt') # load a custom model
|
||||
model = YOLO("yolov8n-cls.pt") # load an official model
|
||||
model = YOLO("path/to/best.pt") # load a custom model
|
||||
|
||||
# Validate the model
|
||||
metrics = model.val() # no arguments needed, dataset and settings remembered
|
||||
metrics.top1 # top1 accuracy
|
||||
metrics.top5 # top5 accuracy
|
||||
metrics.top1 # top1 accuracy
|
||||
metrics.top5 # top5 accuracy
|
||||
```
|
||||
=== "CLI"
|
||||
|
||||
|
|
@ -120,11 +120,11 @@ Use a trained YOLOv8n-cls model to run predictions on images.
|
|||
from ultralytics import YOLO
|
||||
|
||||
# Load a model
|
||||
model = YOLO('yolov8n-cls.pt') # load an official model
|
||||
model = YOLO('path/to/best.pt') # load a custom model
|
||||
model = YOLO("yolov8n-cls.pt") # load an official model
|
||||
model = YOLO("path/to/best.pt") # load a custom model
|
||||
|
||||
# Predict with the model
|
||||
results = model('https://ultralytics.com/images/bus.jpg') # predict on an image
|
||||
results = model("https://ultralytics.com/images/bus.jpg") # predict on an image
|
||||
```
|
||||
=== "CLI"
|
||||
|
||||
|
|
@ -147,11 +147,11 @@ Export a YOLOv8n-cls model to a different format like ONNX, CoreML, etc.
|
|||
from ultralytics import YOLO
|
||||
|
||||
# Load a model
|
||||
model = YOLO('yolov8n-cls.pt') # load an official model
|
||||
model = YOLO('path/to/best.pt') # load a custom trained model
|
||||
model = YOLO("yolov8n-cls.pt") # load an official model
|
||||
model = YOLO("path/to/best.pt") # load a custom trained model
|
||||
|
||||
# Export the model
|
||||
model.export(format='onnx')
|
||||
model.export(format="onnx")
|
||||
```
|
||||
=== "CLI"
|
||||
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue