Reformat Markdown code blocks (#12795)
Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> Co-authored-by: UltralyticsAssistant <web@ultralytics.com>
This commit is contained in:
parent
2af71d15a6
commit
fceea033ad
128 changed files with 1067 additions and 1018 deletions
|
|
@ -59,12 +59,12 @@ Train YOLOv8n on the COCO8 dataset for 100 epochs at image size 640. The trainin
|
|||
from ultralytics import YOLO
|
||||
|
||||
# Load a model
|
||||
model = YOLO('yolov8n.yaml') # build a new model from YAML
|
||||
model = YOLO('yolov8n.pt') # load a pretrained model (recommended for training)
|
||||
model = YOLO('yolov8n.yaml').load('yolov8n.pt') # build from YAML and transfer weights
|
||||
model = YOLO("yolov8n.yaml") # build a new model from YAML
|
||||
model = YOLO("yolov8n.pt") # load a pretrained model (recommended for training)
|
||||
model = YOLO("yolov8n.yaml").load("yolov8n.pt") # build from YAML and transfer weights
|
||||
|
||||
# Train the model
|
||||
results = model.train(data='coco8.yaml', epochs=100, imgsz=640)
|
||||
results = model.train(data="coco8.yaml", epochs=100, imgsz=640)
|
||||
```
|
||||
|
||||
=== "CLI"
|
||||
|
|
@ -94,10 +94,10 @@ Multi-GPU training allows for more efficient utilization of available hardware r
|
|||
from ultralytics import YOLO
|
||||
|
||||
# Load a model
|
||||
model = YOLO('yolov8n.pt') # load a pretrained model (recommended for training)
|
||||
model = YOLO("yolov8n.pt") # load a pretrained model (recommended for training)
|
||||
|
||||
# Train the model with 2 GPUs
|
||||
results = model.train(data='coco8.yaml', epochs=100, imgsz=640, device=[0, 1])
|
||||
results = model.train(data="coco8.yaml", epochs=100, imgsz=640, device=[0, 1])
|
||||
```
|
||||
|
||||
=== "CLI"
|
||||
|
|
@ -121,10 +121,10 @@ To enable training on Apple M1 and M2 chips, you should specify 'mps' as your de
|
|||
from ultralytics import YOLO
|
||||
|
||||
# Load a model
|
||||
model = YOLO('yolov8n.pt') # load a pretrained model (recommended for training)
|
||||
model = YOLO("yolov8n.pt") # load a pretrained model (recommended for training)
|
||||
|
||||
# Train the model with 2 GPUs
|
||||
results = model.train(data='coco8.yaml', epochs=100, imgsz=640, device='mps')
|
||||
results = model.train(data="coco8.yaml", epochs=100, imgsz=640, device="mps")
|
||||
```
|
||||
|
||||
=== "CLI"
|
||||
|
|
@ -154,7 +154,7 @@ Below is an example of how to resume an interrupted training using Python and vi
|
|||
from ultralytics import YOLO
|
||||
|
||||
# Load a model
|
||||
model = YOLO('path/to/last.pt') # load a partially trained model
|
||||
model = YOLO("path/to/last.pt") # load a partially trained model
|
||||
|
||||
# Resume training
|
||||
results = model.train(resume=True)
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue