Reformat Markdown code blocks (#12795)
Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> Co-authored-by: UltralyticsAssistant <web@ultralytics.com>
This commit is contained in:
parent
2af71d15a6
commit
fceea033ad
128 changed files with 1067 additions and 1018 deletions
|
|
@ -60,7 +60,7 @@ Run YOLOv8n benchmarks on all supported export formats including ONNX, TensorRT
|
|||
from ultralytics.utils.benchmarks import benchmark
|
||||
|
||||
# Benchmark on GPU
|
||||
benchmark(model='yolov8n.pt', data='coco8.yaml', imgsz=640, half=False, device=0)
|
||||
benchmark(model="yolov8n.pt", data="coco8.yaml", imgsz=640, half=False, device=0)
|
||||
```
|
||||
|
||||
=== "CLI"
|
||||
|
|
|
|||
|
|
@ -56,11 +56,11 @@ Export a YOLOv8n model to a different format like ONNX or TensorRT. See Argument
|
|||
from ultralytics import YOLO
|
||||
|
||||
# Load a model
|
||||
model = YOLO('yolov8n.pt') # load an official model
|
||||
model = YOLO('path/to/best.pt') # load a custom trained model
|
||||
model = YOLO("yolov8n.pt") # load an official model
|
||||
model = YOLO("path/to/best.pt") # load a custom trained model
|
||||
|
||||
# Export the model
|
||||
model.export(format='onnx')
|
||||
model.export(format="onnx")
|
||||
```
|
||||
|
||||
=== "CLI"
|
||||
|
|
|
|||
|
|
@ -58,10 +58,10 @@ Ultralytics YOLO models return either a Python list of `Results` objects, or a m
|
|||
from ultralytics import YOLO
|
||||
|
||||
# Load a model
|
||||
model = YOLO('yolov8n.pt') # pretrained YOLOv8n model
|
||||
model = YOLO("yolov8n.pt") # pretrained YOLOv8n model
|
||||
|
||||
# Run batched inference on a list of images
|
||||
results = model(['im1.jpg', 'im2.jpg']) # return a list of Results objects
|
||||
results = model(["im1.jpg", "im2.jpg"]) # return a list of Results objects
|
||||
|
||||
# Process results list
|
||||
for result in results:
|
||||
|
|
@ -71,7 +71,7 @@ Ultralytics YOLO models return either a Python list of `Results` objects, or a m
|
|||
probs = result.probs # Probs object for classification outputs
|
||||
obb = result.obb # Oriented boxes object for OBB outputs
|
||||
result.show() # display to screen
|
||||
result.save(filename='result.jpg') # save to disk
|
||||
result.save(filename="result.jpg") # save to disk
|
||||
```
|
||||
|
||||
=== "Return a generator with `stream=True`"
|
||||
|
|
@ -80,10 +80,10 @@ Ultralytics YOLO models return either a Python list of `Results` objects, or a m
|
|||
from ultralytics import YOLO
|
||||
|
||||
# Load a model
|
||||
model = YOLO('yolov8n.pt') # pretrained YOLOv8n model
|
||||
model = YOLO("yolov8n.pt") # pretrained YOLOv8n model
|
||||
|
||||
# Run batched inference on a list of images
|
||||
results = model(['im1.jpg', 'im2.jpg'], stream=True) # return a generator of Results objects
|
||||
results = model(["im1.jpg", "im2.jpg"], stream=True) # return a generator of Results objects
|
||||
|
||||
# Process results generator
|
||||
for result in results:
|
||||
|
|
@ -93,7 +93,7 @@ Ultralytics YOLO models return either a Python list of `Results` objects, or a m
|
|||
probs = result.probs # Probs object for classification outputs
|
||||
obb = result.obb # Oriented boxes object for OBB outputs
|
||||
result.show() # display to screen
|
||||
result.save(filename='result.jpg') # save to disk
|
||||
result.save(filename="result.jpg") # save to disk
|
||||
```
|
||||
|
||||
## Inference Sources
|
||||
|
|
@ -132,10 +132,10 @@ Below are code examples for using each source type:
|
|||
from ultralytics import YOLO
|
||||
|
||||
# Load a pretrained YOLOv8n model
|
||||
model = YOLO('yolov8n.pt')
|
||||
model = YOLO("yolov8n.pt")
|
||||
|
||||
# Define path to the image file
|
||||
source = 'path/to/image.jpg'
|
||||
source = "path/to/image.jpg"
|
||||
|
||||
# Run inference on the source
|
||||
results = model(source) # list of Results objects
|
||||
|
|
@ -148,10 +148,10 @@ Below are code examples for using each source type:
|
|||
from ultralytics import YOLO
|
||||
|
||||
# Load a pretrained YOLOv8n model
|
||||
model = YOLO('yolov8n.pt')
|
||||
model = YOLO("yolov8n.pt")
|
||||
|
||||
# Define current screenshot as source
|
||||
source = 'screen'
|
||||
source = "screen"
|
||||
|
||||
# Run inference on the source
|
||||
results = model(source) # list of Results objects
|
||||
|
|
@ -164,10 +164,10 @@ Below are code examples for using each source type:
|
|||
from ultralytics import YOLO
|
||||
|
||||
# Load a pretrained YOLOv8n model
|
||||
model = YOLO('yolov8n.pt')
|
||||
model = YOLO("yolov8n.pt")
|
||||
|
||||
# Define remote image or video URL
|
||||
source = 'https://ultralytics.com/images/bus.jpg'
|
||||
source = "https://ultralytics.com/images/bus.jpg"
|
||||
|
||||
# Run inference on the source
|
||||
results = model(source) # list of Results objects
|
||||
|
|
@ -181,10 +181,10 @@ Below are code examples for using each source type:
|
|||
from ultralytics import YOLO
|
||||
|
||||
# Load a pretrained YOLOv8n model
|
||||
model = YOLO('yolov8n.pt')
|
||||
model = YOLO("yolov8n.pt")
|
||||
|
||||
# Open an image using PIL
|
||||
source = Image.open('path/to/image.jpg')
|
||||
source = Image.open("path/to/image.jpg")
|
||||
|
||||
# Run inference on the source
|
||||
results = model(source) # list of Results objects
|
||||
|
|
@ -198,10 +198,10 @@ Below are code examples for using each source type:
|
|||
from ultralytics import YOLO
|
||||
|
||||
# Load a pretrained YOLOv8n model
|
||||
model = YOLO('yolov8n.pt')
|
||||
model = YOLO("yolov8n.pt")
|
||||
|
||||
# Read an image using OpenCV
|
||||
source = cv2.imread('path/to/image.jpg')
|
||||
source = cv2.imread("path/to/image.jpg")
|
||||
|
||||
# Run inference on the source
|
||||
results = model(source) # list of Results objects
|
||||
|
|
@ -215,10 +215,10 @@ Below are code examples for using each source type:
|
|||
from ultralytics import YOLO
|
||||
|
||||
# Load a pretrained YOLOv8n model
|
||||
model = YOLO('yolov8n.pt')
|
||||
model = YOLO("yolov8n.pt")
|
||||
|
||||
# Create a random numpy array of HWC shape (640, 640, 3) with values in range [0, 255] and type uint8
|
||||
source = np.random.randint(low=0, high=255, size=(640, 640, 3), dtype='uint8')
|
||||
source = np.random.randint(low=0, high=255, size=(640, 640, 3), dtype="uint8")
|
||||
|
||||
# Run inference on the source
|
||||
results = model(source) # list of Results objects
|
||||
|
|
@ -232,7 +232,7 @@ Below are code examples for using each source type:
|
|||
from ultralytics import YOLO
|
||||
|
||||
# Load a pretrained YOLOv8n model
|
||||
model = YOLO('yolov8n.pt')
|
||||
model = YOLO("yolov8n.pt")
|
||||
|
||||
# Create a random torch tensor of BCHW shape (1, 3, 640, 640) with values in range [0, 1] and type float32
|
||||
source = torch.rand(1, 3, 640, 640, dtype=torch.float32)
|
||||
|
|
@ -249,10 +249,10 @@ Below are code examples for using each source type:
|
|||
from ultralytics import YOLO
|
||||
|
||||
# Load a pretrained YOLOv8n model
|
||||
model = YOLO('yolov8n.pt')
|
||||
model = YOLO("yolov8n.pt")
|
||||
|
||||
# Define a path to a CSV file with images, URLs, videos and directories
|
||||
source = 'path/to/file.csv'
|
||||
source = "path/to/file.csv"
|
||||
|
||||
# Run inference on the source
|
||||
results = model(source) # list of Results objects
|
||||
|
|
@ -265,10 +265,10 @@ Below are code examples for using each source type:
|
|||
from ultralytics import YOLO
|
||||
|
||||
# Load a pretrained YOLOv8n model
|
||||
model = YOLO('yolov8n.pt')
|
||||
model = YOLO("yolov8n.pt")
|
||||
|
||||
# Define path to video file
|
||||
source = 'path/to/video.mp4'
|
||||
source = "path/to/video.mp4"
|
||||
|
||||
# Run inference on the source
|
||||
results = model(source, stream=True) # generator of Results objects
|
||||
|
|
@ -281,10 +281,10 @@ Below are code examples for using each source type:
|
|||
from ultralytics import YOLO
|
||||
|
||||
# Load a pretrained YOLOv8n model
|
||||
model = YOLO('yolov8n.pt')
|
||||
model = YOLO("yolov8n.pt")
|
||||
|
||||
# Define path to directory containing images and videos for inference
|
||||
source = 'path/to/dir'
|
||||
source = "path/to/dir"
|
||||
|
||||
# Run inference on the source
|
||||
results = model(source, stream=True) # generator of Results objects
|
||||
|
|
@ -297,13 +297,13 @@ Below are code examples for using each source type:
|
|||
from ultralytics import YOLO
|
||||
|
||||
# Load a pretrained YOLOv8n model
|
||||
model = YOLO('yolov8n.pt')
|
||||
model = YOLO("yolov8n.pt")
|
||||
|
||||
# Define a glob search for all JPG files in a directory
|
||||
source = 'path/to/dir/*.jpg'
|
||||
source = "path/to/dir/*.jpg"
|
||||
|
||||
# OR define a recursive glob search for all JPG files including subdirectories
|
||||
source = 'path/to/dir/**/*.jpg'
|
||||
source = "path/to/dir/**/*.jpg"
|
||||
|
||||
# Run inference on the source
|
||||
results = model(source, stream=True) # generator of Results objects
|
||||
|
|
@ -316,10 +316,10 @@ Below are code examples for using each source type:
|
|||
from ultralytics import YOLO
|
||||
|
||||
# Load a pretrained YOLOv8n model
|
||||
model = YOLO('yolov8n.pt')
|
||||
model = YOLO("yolov8n.pt")
|
||||
|
||||
# Define source as YouTube video URL
|
||||
source = 'https://youtu.be/LNwODJXcvt4'
|
||||
source = "https://youtu.be/LNwODJXcvt4"
|
||||
|
||||
# Run inference on the source
|
||||
results = model(source, stream=True) # generator of Results objects
|
||||
|
|
@ -332,13 +332,13 @@ Below are code examples for using each source type:
|
|||
from ultralytics import YOLO
|
||||
|
||||
# Load a pretrained YOLOv8n model
|
||||
model = YOLO('yolov8n.pt')
|
||||
model = YOLO("yolov8n.pt")
|
||||
|
||||
# Single stream with batch-size 1 inference
|
||||
source = 'rtsp://example.com/media.mp4' # RTSP, RTMP, TCP or IP streaming address
|
||||
source = "rtsp://example.com/media.mp4" # RTSP, RTMP, TCP or IP streaming address
|
||||
|
||||
# Multiple streams with batched inference (i.e. batch-size 8 for 8 streams)
|
||||
source = 'path/to/list.streams' # *.streams text file with one streaming address per row
|
||||
source = "path/to/list.streams" # *.streams text file with one streaming address per row
|
||||
|
||||
# Run inference on the source
|
||||
results = model(source, stream=True) # generator of Results objects
|
||||
|
|
@ -354,10 +354,10 @@ Below are code examples for using each source type:
|
|||
from ultralytics import YOLO
|
||||
|
||||
# Load a pretrained YOLOv8n model
|
||||
model = YOLO('yolov8n.pt')
|
||||
model = YOLO("yolov8n.pt")
|
||||
|
||||
# Run inference on 'bus.jpg' with arguments
|
||||
model.predict('bus.jpg', save=True, imgsz=320, conf=0.5)
|
||||
model.predict("bus.jpg", save=True, imgsz=320, conf=0.5)
|
||||
```
|
||||
|
||||
Inference arguments:
|
||||
|
|
@ -445,11 +445,11 @@ All Ultralytics `predict()` calls will return a list of `Results` objects:
|
|||
from ultralytics import YOLO
|
||||
|
||||
# Load a pretrained YOLOv8n model
|
||||
model = YOLO('yolov8n.pt')
|
||||
model = YOLO("yolov8n.pt")
|
||||
|
||||
# Run inference on an image
|
||||
results = model('bus.jpg') # list of 1 Results object
|
||||
results = model(['bus.jpg', 'zidane.jpg']) # list of 2 Results objects
|
||||
results = model("bus.jpg") # list of 1 Results object
|
||||
results = model(["bus.jpg", "zidane.jpg"]) # list of 2 Results objects
|
||||
```
|
||||
|
||||
`Results` objects have the following attributes:
|
||||
|
|
@ -497,10 +497,10 @@ For more details see the [`Results` class documentation](../reference/engine/res
|
|||
from ultralytics import YOLO
|
||||
|
||||
# Load a pretrained YOLOv8n model
|
||||
model = YOLO('yolov8n.pt')
|
||||
model = YOLO("yolov8n.pt")
|
||||
|
||||
# Run inference on an image
|
||||
results = model('bus.jpg') # results list
|
||||
results = model("bus.jpg") # results list
|
||||
|
||||
# View results
|
||||
for r in results:
|
||||
|
|
@ -535,10 +535,10 @@ For more details see the [`Boxes` class documentation](../reference/engine/resul
|
|||
from ultralytics import YOLO
|
||||
|
||||
# Load a pretrained YOLOv8n-seg Segment model
|
||||
model = YOLO('yolov8n-seg.pt')
|
||||
model = YOLO("yolov8n-seg.pt")
|
||||
|
||||
# Run inference on an image
|
||||
results = model('bus.jpg') # results list
|
||||
results = model("bus.jpg") # results list
|
||||
|
||||
# View results
|
||||
for r in results:
|
||||
|
|
@ -568,10 +568,10 @@ For more details see the [`Masks` class documentation](../reference/engine/resul
|
|||
from ultralytics import YOLO
|
||||
|
||||
# Load a pretrained YOLOv8n-pose Pose model
|
||||
model = YOLO('yolov8n-pose.pt')
|
||||
model = YOLO("yolov8n-pose.pt")
|
||||
|
||||
# Run inference on an image
|
||||
results = model('bus.jpg') # results list
|
||||
results = model("bus.jpg") # results list
|
||||
|
||||
# View results
|
||||
for r in results:
|
||||
|
|
@ -602,10 +602,10 @@ For more details see the [`Keypoints` class documentation](../reference/engine/r
|
|||
from ultralytics import YOLO
|
||||
|
||||
# Load a pretrained YOLOv8n-cls Classify model
|
||||
model = YOLO('yolov8n-cls.pt')
|
||||
model = YOLO("yolov8n-cls.pt")
|
||||
|
||||
# Run inference on an image
|
||||
results = model('bus.jpg') # results list
|
||||
results = model("bus.jpg") # results list
|
||||
|
||||
# View results
|
||||
for r in results:
|
||||
|
|
@ -637,10 +637,10 @@ For more details see the [`Probs` class documentation](../reference/engine/resul
|
|||
from ultralytics import YOLO
|
||||
|
||||
# Load a pretrained YOLOv8n model
|
||||
model = YOLO('yolov8n-obb.pt')
|
||||
model = YOLO("yolov8n-obb.pt")
|
||||
|
||||
# Run inference on an image
|
||||
results = model('bus.jpg') # results list
|
||||
results = model("bus.jpg") # results list
|
||||
|
||||
# View results
|
||||
for r in results:
|
||||
|
|
@ -676,22 +676,22 @@ The `plot()` method in `Results` objects facilitates visualization of prediction
|
|||
from ultralytics import YOLO
|
||||
|
||||
# Load a pretrained YOLOv8n model
|
||||
model = YOLO('yolov8n.pt')
|
||||
model = YOLO("yolov8n.pt")
|
||||
|
||||
# Run inference on 'bus.jpg'
|
||||
results = model(['bus.jpg', 'zidane.jpg']) # results list
|
||||
results = model(["bus.jpg", "zidane.jpg"]) # results list
|
||||
|
||||
# Visualize the results
|
||||
for i, r in enumerate(results):
|
||||
# Plot results image
|
||||
im_bgr = r.plot() # BGR-order numpy array
|
||||
im_rgb = Image.fromarray(im_bgr[..., ::-1]) # RGB-order PIL image
|
||||
|
||||
|
||||
# Show results to screen (in supported environments)
|
||||
r.show()
|
||||
|
||||
# Save results to disk
|
||||
r.save(filename=f'results{i}.jpg')
|
||||
r.save(filename=f"results{i}.jpg")
|
||||
```
|
||||
|
||||
### `plot()` Method Parameters
|
||||
|
|
@ -727,9 +727,11 @@ When using YOLO models in a multi-threaded application, it's important to instan
|
|||
|
||||
Instantiate a single model inside each thread for thread-safe inference:
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
from threading import Thread
|
||||
|
||||
from ultralytics import YOLO
|
||||
|
||||
|
||||
def thread_safe_predict(image_path):
|
||||
"""Performs thread-safe prediction on an image using a locally instantiated YOLO model."""
|
||||
local_model = YOLO("yolov8n.pt")
|
||||
|
|
@ -755,7 +757,7 @@ Here's a Python script using OpenCV (`cv2`) and YOLOv8 to run inference on video
|
|||
from ultralytics import YOLO
|
||||
|
||||
# Load the YOLOv8 model
|
||||
model = YOLO('yolov8n.pt')
|
||||
model = YOLO("yolov8n.pt")
|
||||
|
||||
# Open the video file
|
||||
video_path = "path/to/your/video/file.mp4"
|
||||
|
|
|
|||
|
|
@ -70,14 +70,14 @@ To run the tracker on video streams, use a trained Detect, Segment or Pose model
|
|||
from ultralytics import YOLO
|
||||
|
||||
# Load an official or custom model
|
||||
model = YOLO('yolov8n.pt') # Load an official Detect model
|
||||
model = YOLO('yolov8n-seg.pt') # Load an official Segment model
|
||||
model = YOLO('yolov8n-pose.pt') # Load an official Pose model
|
||||
model = YOLO('path/to/best.pt') # Load a custom trained model
|
||||
model = YOLO("yolov8n.pt") # Load an official Detect model
|
||||
model = YOLO("yolov8n-seg.pt") # Load an official Segment model
|
||||
model = YOLO("yolov8n-pose.pt") # Load an official Pose model
|
||||
model = YOLO("path/to/best.pt") # Load a custom trained model
|
||||
|
||||
# Perform tracking with the model
|
||||
results = model.track(source="https://youtu.be/LNwODJXcvt4", show=True) # Tracking with default tracker
|
||||
results = model.track(source="https://youtu.be/LNwODJXcvt4", show=True, tracker="bytetrack.yaml") # Tracking with ByteTrack tracker
|
||||
results = model.track("https://youtu.be/LNwODJXcvt4", show=True) # Tracking with default tracker
|
||||
results = model.track("https://youtu.be/LNwODJXcvt4", show=True, tracker="bytetrack.yaml") # with ByteTrack
|
||||
```
|
||||
|
||||
=== "CLI"
|
||||
|
|
@ -113,7 +113,7 @@ Tracking configuration shares properties with Predict mode, such as `conf`, `iou
|
|||
from ultralytics import YOLO
|
||||
|
||||
# Configure the tracking parameters and run the tracker
|
||||
model = YOLO('yolov8n.pt')
|
||||
model = YOLO("yolov8n.pt")
|
||||
results = model.track(source="https://youtu.be/LNwODJXcvt4", conf=0.3, iou=0.5, show=True)
|
||||
```
|
||||
|
||||
|
|
@ -136,8 +136,8 @@ Ultralytics also allows you to use a modified tracker configuration file. To do
|
|||
from ultralytics import YOLO
|
||||
|
||||
# Load the model and run the tracker with a custom configuration file
|
||||
model = YOLO('yolov8n.pt')
|
||||
results = model.track(source="https://youtu.be/LNwODJXcvt4", tracker='custom_tracker.yaml')
|
||||
model = YOLO("yolov8n.pt")
|
||||
results = model.track(source="https://youtu.be/LNwODJXcvt4", tracker="custom_tracker.yaml")
|
||||
```
|
||||
|
||||
=== "CLI"
|
||||
|
|
@ -162,7 +162,7 @@ Here is a Python script using OpenCV (`cv2`) and YOLOv8 to run object tracking o
|
|||
from ultralytics import YOLO
|
||||
|
||||
# Load the YOLOv8 model
|
||||
model = YOLO('yolov8n.pt')
|
||||
model = YOLO("yolov8n.pt")
|
||||
|
||||
# Open the video file
|
||||
video_path = "path/to/video.mp4"
|
||||
|
|
@ -210,11 +210,10 @@ In the following example, we demonstrate how to utilize YOLOv8's tracking capabi
|
|||
|
||||
import cv2
|
||||
import numpy as np
|
||||
|
||||
from ultralytics import YOLO
|
||||
|
||||
# Load the YOLOv8 model
|
||||
model = YOLO('yolov8n.pt')
|
||||
model = YOLO("yolov8n.pt")
|
||||
|
||||
# Open the video file
|
||||
video_path = "path/to/video.mp4"
|
||||
|
|
@ -284,6 +283,7 @@ Finally, after all threads have completed their task, the windows displaying the
|
|||
|
||||
```python
|
||||
import threading
|
||||
|
||||
import cv2
|
||||
from ultralytics import YOLO
|
||||
|
||||
|
|
@ -318,7 +318,7 @@ Finally, after all threads have completed their task, the windows displaying the
|
|||
cv2.imshow(f"Tracking_Stream_{file_index}", res_plotted)
|
||||
|
||||
key = cv2.waitKey(1)
|
||||
if key == ord('q'):
|
||||
if key == ord("q"):
|
||||
break
|
||||
|
||||
# Release video sources
|
||||
|
|
@ -326,8 +326,8 @@ Finally, after all threads have completed their task, the windows displaying the
|
|||
|
||||
|
||||
# Load the models
|
||||
model1 = YOLO('yolov8n.pt')
|
||||
model2 = YOLO('yolov8n-seg.pt')
|
||||
model1 = YOLO("yolov8n.pt")
|
||||
model2 = YOLO("yolov8n-seg.pt")
|
||||
|
||||
# Define the video files for the trackers
|
||||
video_file1 = "path/to/video1.mp4" # Path to video file, 0 for webcam
|
||||
|
|
|
|||
|
|
@ -59,12 +59,12 @@ Train YOLOv8n on the COCO8 dataset for 100 epochs at image size 640. The trainin
|
|||
from ultralytics import YOLO
|
||||
|
||||
# Load a model
|
||||
model = YOLO('yolov8n.yaml') # build a new model from YAML
|
||||
model = YOLO('yolov8n.pt') # load a pretrained model (recommended for training)
|
||||
model = YOLO('yolov8n.yaml').load('yolov8n.pt') # build from YAML and transfer weights
|
||||
model = YOLO("yolov8n.yaml") # build a new model from YAML
|
||||
model = YOLO("yolov8n.pt") # load a pretrained model (recommended for training)
|
||||
model = YOLO("yolov8n.yaml").load("yolov8n.pt") # build from YAML and transfer weights
|
||||
|
||||
# Train the model
|
||||
results = model.train(data='coco8.yaml', epochs=100, imgsz=640)
|
||||
results = model.train(data="coco8.yaml", epochs=100, imgsz=640)
|
||||
```
|
||||
|
||||
=== "CLI"
|
||||
|
|
@ -94,10 +94,10 @@ Multi-GPU training allows for more efficient utilization of available hardware r
|
|||
from ultralytics import YOLO
|
||||
|
||||
# Load a model
|
||||
model = YOLO('yolov8n.pt') # load a pretrained model (recommended for training)
|
||||
model = YOLO("yolov8n.pt") # load a pretrained model (recommended for training)
|
||||
|
||||
# Train the model with 2 GPUs
|
||||
results = model.train(data='coco8.yaml', epochs=100, imgsz=640, device=[0, 1])
|
||||
results = model.train(data="coco8.yaml", epochs=100, imgsz=640, device=[0, 1])
|
||||
```
|
||||
|
||||
=== "CLI"
|
||||
|
|
@ -121,10 +121,10 @@ To enable training on Apple M1 and M2 chips, you should specify 'mps' as your de
|
|||
from ultralytics import YOLO
|
||||
|
||||
# Load a model
|
||||
model = YOLO('yolov8n.pt') # load a pretrained model (recommended for training)
|
||||
model = YOLO("yolov8n.pt") # load a pretrained model (recommended for training)
|
||||
|
||||
# Train the model with 2 GPUs
|
||||
results = model.train(data='coco8.yaml', epochs=100, imgsz=640, device='mps')
|
||||
results = model.train(data="coco8.yaml", epochs=100, imgsz=640, device="mps")
|
||||
```
|
||||
|
||||
=== "CLI"
|
||||
|
|
@ -154,7 +154,7 @@ Below is an example of how to resume an interrupted training using Python and vi
|
|||
from ultralytics import YOLO
|
||||
|
||||
# Load a model
|
||||
model = YOLO('path/to/last.pt') # load a partially trained model
|
||||
model = YOLO("path/to/last.pt") # load a partially trained model
|
||||
|
||||
# Resume training
|
||||
results = model.train(resume=True)
|
||||
|
|
|
|||
|
|
@ -57,15 +57,15 @@ Validate trained YOLOv8n model accuracy on the COCO8 dataset. No argument need t
|
|||
from ultralytics import YOLO
|
||||
|
||||
# Load a model
|
||||
model = YOLO('yolov8n.pt') # load an official model
|
||||
model = YOLO('path/to/best.pt') # load a custom model
|
||||
model = YOLO("yolov8n.pt") # load an official model
|
||||
model = YOLO("path/to/best.pt") # load a custom model
|
||||
|
||||
# Validate the model
|
||||
metrics = model.val() # no arguments needed, dataset and settings remembered
|
||||
metrics.box.map # map50-95
|
||||
metrics.box.map # map50-95
|
||||
metrics.box.map50 # map50
|
||||
metrics.box.map75 # map75
|
||||
metrics.box.maps # a list contains map50-95 of each category
|
||||
metrics.box.maps # a list contains map50-95 of each category
|
||||
```
|
||||
|
||||
=== "CLI"
|
||||
|
|
@ -108,17 +108,12 @@ The below examples showcase YOLO model validation with custom arguments in Pytho
|
|||
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
|
||||
|
||||
# Load a model
|
||||
model = YOLO('yolov8n.pt')
|
||||
|
||||
model = YOLO("yolov8n.pt")
|
||||
|
||||
# Customize validation settings
|
||||
validation_results = model.val(data='coco8.yaml',
|
||||
imgsz=640,
|
||||
batch=16,
|
||||
conf=0.25,
|
||||
iou=0.6,
|
||||
device='0')
|
||||
validation_results = model.val(data="coco8.yaml", imgsz=640, batch=16, conf=0.25, iou=0.6, device="0")
|
||||
```
|
||||
|
||||
=== "CLI"
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue