Reformat Markdown code blocks (#12795)

Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com>
Co-authored-by: UltralyticsAssistant <web@ultralytics.com>
This commit is contained in:
Glenn Jocher 2024-05-18 18:58:06 +02:00 committed by GitHub
parent 2af71d15a6
commit fceea033ad
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
128 changed files with 1067 additions and 1018 deletions

View file

@ -92,13 +92,13 @@ Object detection is straightforward with the `train` method, as illustrated belo
from ultralytics import YOLOWorld
# Load a pretrained YOLOv8s-worldv2 model
model = YOLOWorld('yolov8s-worldv2.pt')
model = YOLOWorld("yolov8s-worldv2.pt")
# Train the model on the COCO8 example dataset for 100 epochs
results = model.train(data='coco8.yaml', epochs=100, imgsz=640)
results = model.train(data="coco8.yaml", epochs=100, imgsz=640)
# Run inference with the YOLOv8n model on the 'bus.jpg' image
results = model('path/to/bus.jpg')
results = model("path/to/bus.jpg")
```
=== "CLI"
@ -120,10 +120,10 @@ Object detection is straightforward with the `predict` method, as illustrated be
from ultralytics import YOLOWorld
# Initialize a YOLO-World model
model = YOLOWorld('yolov8s-world.pt') # or select yolov8m/l-world.pt for different sizes
model = YOLOWorld("yolov8s-world.pt") # or select yolov8m/l-world.pt for different sizes
# Execute inference with the YOLOv8s-world model on the specified image
results = model.predict('path/to/image.jpg')
results = model.predict("path/to/image.jpg")
# Show results
results[0].show()
@ -150,10 +150,10 @@ Model validation on a dataset is streamlined as follows:
from ultralytics import YOLO
# Create a YOLO-World model
model = YOLO('yolov8s-world.pt') # or select yolov8m/l-world.pt for different sizes
model = YOLO("yolov8s-world.pt") # or select yolov8m/l-world.pt for different sizes
# Conduct model validation on the COCO8 example dataset
metrics = model.val(data='coco8.yaml')
metrics = model.val(data="coco8.yaml")
```
=== "CLI"
@ -175,7 +175,7 @@ Object tracking with YOLO-World model on a video/images is streamlined as follow
from ultralytics import YOLO
# Create a YOLO-World model
model = YOLO('yolov8s-world.pt') # or select yolov8m/l-world.pt for different sizes
model = YOLO("yolov8s-world.pt") # or select yolov8m/l-world.pt for different sizes
# Track with a YOLO-World model on a video
results = model.track(source="path/to/video.mp4")
@ -208,13 +208,13 @@ For instance, if your application only requires detecting 'person' and 'bus' obj
from ultralytics import YOLO
# Initialize a YOLO-World model
model = YOLO('yolov8s-world.pt') # or choose yolov8m/l-world.pt
model = YOLO("yolov8s-world.pt") # or choose yolov8m/l-world.pt
# Define custom classes
model.set_classes(["person", "bus"])
# Execute prediction for specified categories on an image
results = model.predict('path/to/image.jpg')
results = model.predict("path/to/image.jpg")
# Show results
results[0].show()
@ -232,8 +232,8 @@ You can also save a model after setting custom classes. By doing this you create
from ultralytics import YOLO
# Initialize a YOLO-World model
model = YOLO('yolov8s-world.pt') # or select yolov8m/l-world.pt
model = YOLO("yolov8s-world.pt") # or select yolov8m/l-world.pt
# Define custom classes
model.set_classes(["person", "bus"])
@ -247,10 +247,10 @@ You can also save a model after setting custom classes. By doing this you create
from ultralytics import YOLO
# Load your custom model
model = YOLO('custom_yolov8s.pt')
model = YOLO("custom_yolov8s.pt")
# Run inference to detect your custom classes
results = model.predict('path/to/image.jpg')
results = model.predict("path/to/image.jpg")
# Show results
results[0].show()
@ -294,8 +294,8 @@ This approach provides a powerful means of customizing state-of-the-art object d
=== "Python"
```python
from ultralytics.models.yolo.world.train_world import WorldTrainerFromScratch
from ultralytics import YOLOWorld
from ultralytics.models.yolo.world.train_world import WorldTrainerFromScratch
data = dict(
train=dict(
@ -315,7 +315,6 @@ This approach provides a powerful means of customizing state-of-the-art object d
)
model = YOLOWorld("yolov8s-worldv2.yaml")
model.train(data=data, batch=128, epochs=100, trainer=WorldTrainerFromScratch)
```
## Citations and Acknowledgements