Reformat Markdown code blocks (#12795)

Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com>
Co-authored-by: UltralyticsAssistant <web@ultralytics.com>
This commit is contained in:
Glenn Jocher 2024-05-18 18:58:06 +02:00 committed by GitHub
parent 2af71d15a6
commit fceea033ad
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
128 changed files with 1067 additions and 1018 deletions

View file

@ -50,16 +50,16 @@ The Segment Anything Model can be employed for a multitude of downstream tasks t
from ultralytics import SAM
# Load a model
model = SAM('sam_b.pt')
model = SAM("sam_b.pt")
# Display model information (optional)
model.info()
# Run inference with bboxes prompt
model('ultralytics/assets/zidane.jpg', bboxes=[439, 437, 524, 709])
model("ultralytics/assets/zidane.jpg", bboxes=[439, 437, 524, 709])
# Run inference with points prompt
model('ultralytics/assets/zidane.jpg', points=[900, 370], labels=[1])
model("ultralytics/assets/zidane.jpg", points=[900, 370], labels=[1])
```
!!! Example "Segment everything"
@ -72,13 +72,13 @@ The Segment Anything Model can be employed for a multitude of downstream tasks t
from ultralytics import SAM
# Load a model
model = SAM('sam_b.pt')
model = SAM("sam_b.pt")
# Display model information (optional)
model.info()
# Run inference
model('path/to/image.jpg')
model("path/to/image.jpg")
```
=== "CLI"
@ -100,7 +100,7 @@ The Segment Anything Model can be employed for a multitude of downstream tasks t
from ultralytics.models.sam import Predictor as SAMPredictor
# Create SAMPredictor
overrides = dict(conf=0.25, task='segment', mode='predict', imgsz=1024, model="mobile_sam.pt")
overrides = dict(conf=0.25, task="segment", mode="predict", imgsz=1024, model="mobile_sam.pt")
predictor = SAMPredictor(overrides=overrides)
# Set image
@ -121,7 +121,7 @@ The Segment Anything Model can be employed for a multitude of downstream tasks t
from ultralytics.models.sam import Predictor as SAMPredictor
# Create SAMPredictor
overrides = dict(conf=0.25, task='segment', mode='predict', imgsz=1024, model="mobile_sam.pt")
overrides = dict(conf=0.25, task="segment", mode="predict", imgsz=1024, model="mobile_sam.pt")
predictor = SAMPredictor(overrides=overrides)
# Segment with additional args
@ -150,27 +150,27 @@ Tests run on a 2023 Apple M2 Macbook with 16GB of RAM. To reproduce this test:
=== "Python"
```python
from ultralytics import FastSAM, SAM, YOLO
from ultralytics import SAM, YOLO, FastSAM
# Profile SAM-b
model = SAM('sam_b.pt')
model = SAM("sam_b.pt")
model.info()
model('ultralytics/assets')
model("ultralytics/assets")
# Profile MobileSAM
model = SAM('mobile_sam.pt')
model = SAM("mobile_sam.pt")
model.info()
model('ultralytics/assets')
model("ultralytics/assets")
# Profile FastSAM-s
model = FastSAM('FastSAM-s.pt')
model = FastSAM("FastSAM-s.pt")
model.info()
model('ultralytics/assets')
model("ultralytics/assets")
# Profile YOLOv8n-seg
model = YOLO('yolov8n-seg.pt')
model = YOLO("yolov8n-seg.pt")
model.info()
model('ultralytics/assets')
model("ultralytics/assets")
```
## Auto-Annotation: A Quick Path to Segmentation Datasets
@ -188,7 +188,7 @@ To auto-annotate your dataset with the Ultralytics framework, use the `auto_anno
```python
from ultralytics.data.annotator import auto_annotate
auto_annotate(data="path/to/images", det_model="yolov8x.pt", sam_model='sam_b.pt')
auto_annotate(data="path/to/images", det_model="yolov8x.pt", sam_model="sam_b.pt")
```
| Argument | Type | Description | Default |