Reformat Markdown code blocks (#12795)

Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com>
Co-authored-by: UltralyticsAssistant <web@ultralytics.com>
This commit is contained in:
Glenn Jocher 2024-05-18 18:58:06 +02:00 committed by GitHub
parent 2af71d15a6
commit fceea033ad
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
128 changed files with 1067 additions and 1018 deletions

View file

@ -56,16 +56,16 @@ To perform object detection on an image, use the `predict` method as shown below
from ultralytics.models.fastsam import FastSAMPrompt
# Define an inference source
source = 'path/to/bus.jpg'
source = "path/to/bus.jpg"
# Create a FastSAM model
model = FastSAM('FastSAM-s.pt') # or FastSAM-x.pt
model = FastSAM("FastSAM-s.pt") # or FastSAM-x.pt
# Run inference on an image
everything_results = model(source, device='cpu', retina_masks=True, imgsz=1024, conf=0.4, iou=0.9)
everything_results = model(source, device="cpu", retina_masks=True, imgsz=1024, conf=0.4, iou=0.9)
# Prepare a Prompt Process object
prompt_process = FastSAMPrompt(source, everything_results, device='cpu')
prompt_process = FastSAMPrompt(source, everything_results, device="cpu")
# Everything prompt
ann = prompt_process.everything_prompt()
@ -74,13 +74,13 @@ To perform object detection on an image, use the `predict` method as shown below
ann = prompt_process.box_prompt(bbox=[200, 200, 300, 300])
# Text prompt
ann = prompt_process.text_prompt(text='a photo of a dog')
ann = prompt_process.text_prompt(text="a photo of a dog")
# Point prompt
# points default [[0,0]] [[x1,y1],[x2,y2]]
# point_label default [0] [1,0] 0:background, 1:foreground
ann = prompt_process.point_prompt(points=[[200, 200]], pointlabel=[1])
prompt_process.plot(annotations=ann, output='./')
prompt_process.plot(annotations=ann, output="./")
```
=== "CLI"
@ -104,10 +104,10 @@ Validation of the model on a dataset can be done as follows:
from ultralytics import FastSAM
# Create a FastSAM model
model = FastSAM('FastSAM-s.pt') # or FastSAM-x.pt
model = FastSAM("FastSAM-s.pt") # or FastSAM-x.pt
# Validate the model
results = model.val(data='coco8-seg.yaml')
results = model.val(data="coco8-seg.yaml")
```
=== "CLI"
@ -131,7 +131,7 @@ To perform object tracking on an image, use the `track` method as shown below:
from ultralytics import FastSAM
# Create a FastSAM model
model = FastSAM('FastSAM-s.pt') # or FastSAM-x.pt
model = FastSAM("FastSAM-s.pt") # or FastSAM-x.pt
# Track with a FastSAM model on a video
results = model.track(source="path/to/video.mp4", imgsz=640)