Reformat Markdown code blocks (#12795)
Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> Co-authored-by: UltralyticsAssistant <web@ultralytics.com>
This commit is contained in:
parent
2af71d15a6
commit
fceea033ad
128 changed files with 1067 additions and 1018 deletions
|
|
@ -50,10 +50,10 @@ To install the required packages, run:
|
|||
from ultralytics import YOLO
|
||||
|
||||
# Load a YOLOv8n model
|
||||
model = YOLO('yolov8n.pt')
|
||||
model = YOLO("yolov8n.pt")
|
||||
|
||||
# Start tuning hyperparameters for YOLOv8n training on the COCO8 dataset
|
||||
result_grid = model.tune(data='coco8.yaml', use_ray=True)
|
||||
result_grid = model.tune(data="coco8.yaml", use_ray=True)
|
||||
```
|
||||
|
||||
## `tune()` Method Parameters
|
||||
|
|
@ -112,10 +112,12 @@ In this example, we demonstrate how to use a custom search space for hyperparame
|
|||
model = YOLO("yolov8n.pt")
|
||||
|
||||
# Run Ray Tune on the model
|
||||
result_grid = model.tune(data="coco8.yaml",
|
||||
space={"lr0": tune.uniform(1e-5, 1e-1)},
|
||||
epochs=50,
|
||||
use_ray=True)
|
||||
result_grid = model.tune(
|
||||
data="coco8.yaml",
|
||||
space={"lr0": tune.uniform(1e-5, 1e-1)},
|
||||
epochs=50,
|
||||
use_ray=True,
|
||||
)
|
||||
```
|
||||
|
||||
In the code snippet above, we create a YOLO model with the "yolov8n.pt" pretrained weights. Then, we call the `tune()` method, specifying the dataset configuration with "coco8.yaml". We provide a custom search space for the initial learning rate `lr0` using a dictionary with the key "lr0" and the value `tune.uniform(1e-5, 1e-1)`. Finally, we pass additional training arguments, such as the number of epochs directly to the tune method as `epochs=50`.
|
||||
|
|
@ -164,10 +166,14 @@ You can plot the history of reported metrics for each trial to see how the metri
|
|||
import matplotlib.pyplot as plt
|
||||
|
||||
for result in result_grid:
|
||||
plt.plot(result.metrics_dataframe["training_iteration"], result.metrics_dataframe["mean_accuracy"], label=f"Trial {i}")
|
||||
plt.plot(
|
||||
result.metrics_dataframe["training_iteration"],
|
||||
result.metrics_dataframe["mean_accuracy"],
|
||||
label=f"Trial {i}",
|
||||
)
|
||||
|
||||
plt.xlabel('Training Iterations')
|
||||
plt.ylabel('Mean Accuracy')
|
||||
plt.xlabel("Training Iterations")
|
||||
plt.ylabel("Mean Accuracy")
|
||||
plt.legend()
|
||||
plt.show()
|
||||
```
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue