Reformat Markdown code blocks (#12795)

Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com>
Co-authored-by: UltralyticsAssistant <web@ultralytics.com>
This commit is contained in:
Glenn Jocher 2024-05-18 18:58:06 +02:00 committed by GitHub
parent 2af71d15a6
commit fceea033ad
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
128 changed files with 1067 additions and 1018 deletions

View file

@ -50,10 +50,10 @@ To install the required packages, run:
from ultralytics import YOLO
# Load a YOLOv8n model
model = YOLO('yolov8n.pt')
model = YOLO("yolov8n.pt")
# Start tuning hyperparameters for YOLOv8n training on the COCO8 dataset
result_grid = model.tune(data='coco8.yaml', use_ray=True)
result_grid = model.tune(data="coco8.yaml", use_ray=True)
```
## `tune()` Method Parameters
@ -112,10 +112,12 @@ In this example, we demonstrate how to use a custom search space for hyperparame
model = YOLO("yolov8n.pt")
# Run Ray Tune on the model
result_grid = model.tune(data="coco8.yaml",
space={"lr0": tune.uniform(1e-5, 1e-1)},
epochs=50,
use_ray=True)
result_grid = model.tune(
data="coco8.yaml",
space={"lr0": tune.uniform(1e-5, 1e-1)},
epochs=50,
use_ray=True,
)
```
In the code snippet above, we create a YOLO model with the "yolov8n.pt" pretrained weights. Then, we call the `tune()` method, specifying the dataset configuration with "coco8.yaml". We provide a custom search space for the initial learning rate `lr0` using a dictionary with the key "lr0" and the value `tune.uniform(1e-5, 1e-1)`. Finally, we pass additional training arguments, such as the number of epochs directly to the tune method as `epochs=50`.
@ -164,10 +166,14 @@ You can plot the history of reported metrics for each trial to see how the metri
import matplotlib.pyplot as plt
for result in result_grid:
plt.plot(result.metrics_dataframe["training_iteration"], result.metrics_dataframe["mean_accuracy"], label=f"Trial {i}")
plt.plot(
result.metrics_dataframe["training_iteration"],
result.metrics_dataframe["mean_accuracy"],
label=f"Trial {i}",
)
plt.xlabel('Training Iterations')
plt.ylabel('Mean Accuracy')
plt.xlabel("Training Iterations")
plt.ylabel("Mean Accuracy")
plt.legend()
plt.show()
```