Reformat Markdown code blocks (#12795)

Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com>
Co-authored-by: UltralyticsAssistant <web@ultralytics.com>
This commit is contained in:
Glenn Jocher 2024-05-18 18:58:06 +02:00 committed by GitHub
parent 2af71d15a6
commit fceea033ad
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
128 changed files with 1067 additions and 1018 deletions

View file

@ -60,21 +60,28 @@ pip install -U ultralytics sahi
Here's how to import the necessary modules and download a YOLOv8 model and some test images:
```python
from sahi.utils.yolov8 import download_yolov8s_model
from pathlib import Path
from IPython.display import Image
from sahi import AutoDetectionModel
from sahi.predict import get_prediction, get_sliced_prediction, predict
from sahi.utils.cv import read_image
from sahi.utils.file import download_from_url
from sahi.predict import get_prediction, get_sliced_prediction, predict
from pathlib import Path
from IPython.display import Image
from sahi.utils.yolov8 import download_yolov8s_model
# Download YOLOv8 model
yolov8_model_path = "models/yolov8s.pt"
download_yolov8s_model(yolov8_model_path)
# Download test images
download_from_url('https://raw.githubusercontent.com/obss/sahi/main/demo/demo_data/small-vehicles1.jpeg', 'demo_data/small-vehicles1.jpeg')
download_from_url('https://raw.githubusercontent.com/obss/sahi/main/demo/demo_data/terrain2.png', 'demo_data/terrain2.png')
download_from_url(
"https://raw.githubusercontent.com/obss/sahi/main/demo/demo_data/small-vehicles1.jpeg",
"demo_data/small-vehicles1.jpeg",
)
download_from_url(
"https://raw.githubusercontent.com/obss/sahi/main/demo/demo_data/terrain2.png",
"demo_data/terrain2.png",
)
```
## Standard Inference with YOLOv8
@ -85,7 +92,7 @@ You can instantiate a YOLOv8 model for object detection like this:
```python
detection_model = AutoDetectionModel.from_pretrained(
model_type='yolov8',
model_type="yolov8",
model_path=yolov8_model_path,
confidence_threshold=0.3,
device="cpu", # or 'cuda:0'
@ -124,7 +131,7 @@ result = get_sliced_prediction(
slice_height=256,
slice_width=256,
overlap_height_ratio=0.2,
overlap_width_ratio=0.2
overlap_width_ratio=0.2,
)
```