Reformat Markdown code blocks (#12795)
Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> Co-authored-by: UltralyticsAssistant <web@ultralytics.com>
This commit is contained in:
parent
2af71d15a6
commit
fceea033ad
128 changed files with 1067 additions and 1018 deletions
|
|
@ -75,21 +75,21 @@ To train DOTA dataset, we split original DOTA images with high-resolution into i
|
|||
=== "Python"
|
||||
|
||||
```python
|
||||
from ultralytics.data.split_dota import split_trainval, split_test
|
||||
from ultralytics.data.split_dota import split_test, split_trainval
|
||||
|
||||
# split train and val set, with labels.
|
||||
split_trainval(
|
||||
data_root='path/to/DOTAv1.0/',
|
||||
save_dir='path/to/DOTAv1.0-split/',
|
||||
rates=[0.5, 1.0, 1.5], # multiscale
|
||||
gap=500
|
||||
data_root="path/to/DOTAv1.0/",
|
||||
save_dir="path/to/DOTAv1.0-split/",
|
||||
rates=[0.5, 1.0, 1.5], # multiscale
|
||||
gap=500,
|
||||
)
|
||||
# split test set, without labels.
|
||||
split_test(
|
||||
data_root='path/to/DOTAv1.0/',
|
||||
save_dir='path/to/DOTAv1.0-split/',
|
||||
rates=[0.5, 1.0, 1.5], # multiscale
|
||||
gap=500
|
||||
data_root="path/to/DOTAv1.0/",
|
||||
save_dir="path/to/DOTAv1.0-split/",
|
||||
rates=[0.5, 1.0, 1.5], # multiscale
|
||||
gap=500,
|
||||
)
|
||||
```
|
||||
|
||||
|
|
@ -109,10 +109,10 @@ To train a model on the DOTA v1 dataset, you can utilize the following code snip
|
|||
from ultralytics import YOLO
|
||||
|
||||
# Create a new YOLOv8n-OBB model from scratch
|
||||
model = YOLO('yolov8n-obb.yaml')
|
||||
model = YOLO("yolov8n-obb.yaml")
|
||||
|
||||
# Train the model on the DOTAv2 dataset
|
||||
results = model.train(data='DOTAv1.yaml', epochs=100, imgsz=640)
|
||||
results = model.train(data="DOTAv1.yaml", epochs=100, imgsz=640)
|
||||
```
|
||||
|
||||
=== "CLI"
|
||||
|
|
|
|||
|
|
@ -34,10 +34,10 @@ To train a YOLOv8n-obb model on the DOTA8 dataset for 100 epochs with an image s
|
|||
from ultralytics import YOLO
|
||||
|
||||
# Load a model
|
||||
model = YOLO('yolov8n-obb.pt') # load a pretrained model (recommended for training)
|
||||
model = YOLO("yolov8n-obb.pt") # load a pretrained model (recommended for training)
|
||||
|
||||
# Train the model
|
||||
results = model.train(data='dota8.yaml', epochs=100, imgsz=640)
|
||||
results = model.train(data="dota8.yaml", epochs=100, imgsz=640)
|
||||
```
|
||||
|
||||
=== "CLI"
|
||||
|
|
|
|||
|
|
@ -40,10 +40,10 @@ To train a model using these OBB formats:
|
|||
from ultralytics import YOLO
|
||||
|
||||
# Create a new YOLOv8n-OBB model from scratch
|
||||
model = YOLO('yolov8n-obb.yaml')
|
||||
model = YOLO("yolov8n-obb.yaml")
|
||||
|
||||
# Train the model on the DOTAv2 dataset
|
||||
results = model.train(data='DOTAv1.yaml', epochs=100, imgsz=640)
|
||||
results = model.train(data="DOTAv1.yaml", epochs=100, imgsz=640)
|
||||
```
|
||||
|
||||
=== "CLI"
|
||||
|
|
@ -78,7 +78,7 @@ Transitioning labels from the DOTA dataset format to the YOLO OBB format can be
|
|||
```python
|
||||
from ultralytics.data.converter import convert_dota_to_yolo_obb
|
||||
|
||||
convert_dota_to_yolo_obb('path/to/DOTA')
|
||||
convert_dota_to_yolo_obb("path/to/DOTA")
|
||||
```
|
||||
|
||||
This conversion mechanism is instrumental for datasets in the DOTA format, ensuring alignment with the Ultralytics YOLO OBB format.
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue