Reformat Markdown code blocks (#12795)
Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> Co-authored-by: UltralyticsAssistant <web@ultralytics.com>
This commit is contained in:
parent
2af71d15a6
commit
fceea033ad
128 changed files with 1067 additions and 1018 deletions
|
|
@ -36,13 +36,13 @@ pip install ultralytics[explorer]
|
|||
from ultralytics import Explorer
|
||||
|
||||
# Create an Explorer object
|
||||
explorer = Explorer(data='coco128.yaml', model='yolov8n.pt')
|
||||
explorer = Explorer(data="coco128.yaml", model="yolov8n.pt")
|
||||
|
||||
# Create embeddings for your dataset
|
||||
explorer.create_embeddings_table()
|
||||
|
||||
# Search for similar images to a given image/images
|
||||
dataframe = explorer.get_similar(img='path/to/image.jpg')
|
||||
dataframe = explorer.get_similar(img="path/to/image.jpg")
|
||||
|
||||
# Or search for similar images to a given index/indices
|
||||
dataframe = explorer.get_similar(idx=0)
|
||||
|
|
@ -75,18 +75,17 @@ You get a pandas dataframe with the `limit` number of most similar data points t
|
|||
from ultralytics import Explorer
|
||||
|
||||
# create an Explorer object
|
||||
exp = Explorer(data='coco128.yaml', model='yolov8n.pt')
|
||||
exp = Explorer(data="coco128.yaml", model="yolov8n.pt")
|
||||
exp.create_embeddings_table()
|
||||
|
||||
similar = exp.get_similar(img='https://ultralytics.com/images/bus.jpg', limit=10)
|
||||
similar = exp.get_similar(img="https://ultralytics.com/images/bus.jpg", limit=10)
|
||||
print(similar.head())
|
||||
|
||||
# Search using multiple indices
|
||||
similar = exp.get_similar(
|
||||
img=['https://ultralytics.com/images/bus.jpg',
|
||||
'https://ultralytics.com/images/bus.jpg'],
|
||||
limit=10
|
||||
)
|
||||
img=["https://ultralytics.com/images/bus.jpg", "https://ultralytics.com/images/bus.jpg"],
|
||||
limit=10,
|
||||
)
|
||||
print(similar.head())
|
||||
```
|
||||
|
||||
|
|
@ -96,14 +95,14 @@ You get a pandas dataframe with the `limit` number of most similar data points t
|
|||
from ultralytics import Explorer
|
||||
|
||||
# create an Explorer object
|
||||
exp = Explorer(data='coco128.yaml', model='yolov8n.pt')
|
||||
exp = Explorer(data="coco128.yaml", model="yolov8n.pt")
|
||||
exp.create_embeddings_table()
|
||||
|
||||
similar = exp.get_similar(idx=1, limit=10)
|
||||
print(similar.head())
|
||||
|
||||
# Search using multiple indices
|
||||
similar = exp.get_similar(idx=[1,10], limit=10)
|
||||
similar = exp.get_similar(idx=[1, 10], limit=10)
|
||||
print(similar.head())
|
||||
```
|
||||
|
||||
|
|
@ -119,10 +118,10 @@ You can also plot the similar images using the `plot_similar` method. This metho
|
|||
from ultralytics import Explorer
|
||||
|
||||
# create an Explorer object
|
||||
exp = Explorer(data='coco128.yaml', model='yolov8n.pt')
|
||||
exp = Explorer(data="coco128.yaml", model="yolov8n.pt")
|
||||
exp.create_embeddings_table()
|
||||
|
||||
plt = exp.plot_similar(img='https://ultralytics.com/images/bus.jpg', limit=10)
|
||||
plt = exp.plot_similar(img="https://ultralytics.com/images/bus.jpg", limit=10)
|
||||
plt.show()
|
||||
```
|
||||
|
||||
|
|
@ -132,7 +131,7 @@ You can also plot the similar images using the `plot_similar` method. This metho
|
|||
from ultralytics import Explorer
|
||||
|
||||
# create an Explorer object
|
||||
exp = Explorer(data='coco128.yaml', model='yolov8n.pt')
|
||||
exp = Explorer(data="coco128.yaml", model="yolov8n.pt")
|
||||
exp.create_embeddings_table()
|
||||
|
||||
plt = exp.plot_similar(idx=1, limit=10)
|
||||
|
|
@ -150,9 +149,8 @@ Note: This works using LLMs under the hood so the results are probabilistic and
|
|||
from ultralytics import Explorer
|
||||
from ultralytics.data.explorer import plot_query_result
|
||||
|
||||
|
||||
# create an Explorer object
|
||||
exp = Explorer(data='coco128.yaml', model='yolov8n.pt')
|
||||
exp = Explorer(data="coco128.yaml", model="yolov8n.pt")
|
||||
exp.create_embeddings_table()
|
||||
|
||||
df = exp.ask_ai("show me 100 images with exactly one person and 2 dogs. There can be other objects too")
|
||||
|
|
@ -173,7 +171,7 @@ You can run SQL queries on your dataset using the `sql_query` method. This metho
|
|||
from ultralytics import Explorer
|
||||
|
||||
# create an Explorer object
|
||||
exp = Explorer(data='coco128.yaml', model='yolov8n.pt')
|
||||
exp = Explorer(data="coco128.yaml", model="yolov8n.pt")
|
||||
exp.create_embeddings_table()
|
||||
|
||||
df = exp.sql_query("WHERE labels LIKE '%person%' AND labels LIKE '%dog%'")
|
||||
|
|
@ -190,7 +188,7 @@ You can also plot the results of a SQL query using the `plot_sql_query` method.
|
|||
from ultralytics import Explorer
|
||||
|
||||
# create an Explorer object
|
||||
exp = Explorer(data='coco128.yaml', model='yolov8n.pt')
|
||||
exp = Explorer(data="coco128.yaml", model="yolov8n.pt")
|
||||
exp.create_embeddings_table()
|
||||
|
||||
# plot the SQL Query
|
||||
|
|
@ -293,7 +291,7 @@ You can use similarity index to build custom conditions to filter out the datase
|
|||
import numpy as np
|
||||
|
||||
sim_count = np.array(sim_idx["count"])
|
||||
sim_idx['im_file'][sim_count > 30]
|
||||
sim_idx["im_file"][sim_count > 30]
|
||||
```
|
||||
|
||||
### Visualize Embedding Space
|
||||
|
|
@ -301,10 +299,10 @@ sim_idx['im_file'][sim_count > 30]
|
|||
You can also visualize the embedding space using the plotting tool of your choice. For example here is a simple example using matplotlib:
|
||||
|
||||
```python
|
||||
import numpy as np
|
||||
from sklearn.decomposition import PCA
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
from mpl_toolkits.mplot3d import Axes3D
|
||||
from sklearn.decomposition import PCA
|
||||
|
||||
# Reduce dimensions using PCA to 3 components for visualization in 3D
|
||||
pca = PCA(n_components=3)
|
||||
|
|
@ -312,14 +310,14 @@ reduced_data = pca.fit_transform(embeddings)
|
|||
|
||||
# Create a 3D scatter plot using Matplotlib Axes3D
|
||||
fig = plt.figure(figsize=(8, 6))
|
||||
ax = fig.add_subplot(111, projection='3d')
|
||||
ax = fig.add_subplot(111, projection="3d")
|
||||
|
||||
# Scatter plot
|
||||
ax.scatter(reduced_data[:, 0], reduced_data[:, 1], reduced_data[:, 2], alpha=0.5)
|
||||
ax.set_title('3D Scatter Plot of Reduced 256-Dimensional Data (PCA)')
|
||||
ax.set_xlabel('Component 1')
|
||||
ax.set_ylabel('Component 2')
|
||||
ax.set_zlabel('Component 3')
|
||||
ax.set_title("3D Scatter Plot of Reduced 256-Dimensional Data (PCA)")
|
||||
ax.set_xlabel("Component 1")
|
||||
ax.set_ylabel("Component 2")
|
||||
ax.set_zlabel("Component 3")
|
||||
|
||||
plt.show()
|
||||
```
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue