Reformat Markdown code blocks (#12795)

Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com>
Co-authored-by: UltralyticsAssistant <web@ultralytics.com>
This commit is contained in:
Glenn Jocher 2024-05-18 18:58:06 +02:00 committed by GitHub
parent 2af71d15a6
commit fceea033ad
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
128 changed files with 1067 additions and 1018 deletions

View file

@ -42,10 +42,10 @@ To train a YOLOv8n model on the African wildlife dataset for 100 epochs with an
from ultralytics import YOLO
# Load a model
model = YOLO('yolov8n.pt') # load a pretrained model (recommended for training)
model = YOLO("yolov8n.pt") # load a pretrained model (recommended for training)
# Train the model
results = model.train(data='african-wildlife.yaml', epochs=100, imgsz=640)
results = model.train(data="african-wildlife.yaml", epochs=100, imgsz=640)
```
=== "CLI"
@ -63,7 +63,7 @@ To train a YOLOv8n model on the African wildlife dataset for 100 epochs with an
from ultralytics import YOLO
# Load a model
model = YOLO('path/to/best.pt') # load a brain-tumor fine-tuned model
model = YOLO("path/to/best.pt") # load a brain-tumor fine-tuned model
# Inference using the model
results = model.predict("https://ultralytics.com/assets/african-wildlife-sample.jpg")

View file

@ -53,10 +53,10 @@ To train a YOLOv8n model on the Argoverse dataset for 100 epochs with an image s
from ultralytics import YOLO
# Load a model
model = YOLO('yolov8n.pt') # load a pretrained model (recommended for training)
model = YOLO("yolov8n.pt") # load a pretrained model (recommended for training)
# Train the model
results = model.train(data='Argoverse.yaml', epochs=100, imgsz=640)
results = model.train(data="Argoverse.yaml", epochs=100, imgsz=640)
```
=== "CLI"

View file

@ -52,10 +52,10 @@ To train a YOLOv8n model on the brain tumor dataset for 100 epochs with an image
from ultralytics import YOLO
# Load a model
model = YOLO('yolov8n.pt') # load a pretrained model (recommended for training)
model = YOLO("yolov8n.pt") # load a pretrained model (recommended for training)
# Train the model
results = model.train(data='brain-tumor.yaml', epochs=100, imgsz=640)
results = model.train(data="brain-tumor.yaml", epochs=100, imgsz=640)
```
=== "CLI"
@ -73,7 +73,7 @@ To train a YOLOv8n model on the brain tumor dataset for 100 epochs with an image
from ultralytics import YOLO
# Load a model
model = YOLO('path/to/best.pt') # load a brain-tumor fine-tuned model
model = YOLO("path/to/best.pt") # load a brain-tumor fine-tuned model
# Inference using the model
results = model.predict("https://ultralytics.com/assets/brain-tumor-sample.jpg")

View file

@ -70,10 +70,10 @@ To train a YOLOv8n model on the COCO dataset for 100 epochs with an image size o
from ultralytics import YOLO
# Load a model
model = YOLO('yolov8n.pt') # load a pretrained model (recommended for training)
model = YOLO("yolov8n.pt") # load a pretrained model (recommended for training)
# Train the model
results = model.train(data='coco.yaml', epochs=100, imgsz=640)
results = model.train(data="coco.yaml", epochs=100, imgsz=640)
```
=== "CLI"

View file

@ -45,10 +45,10 @@ To train a YOLOv8n model on the COCO8 dataset for 100 epochs with an image size
from ultralytics import YOLO
# Load a model
model = YOLO('yolov8n.pt') # load a pretrained model (recommended for training)
model = YOLO("yolov8n.pt") # load a pretrained model (recommended for training)
# Train the model
results = model.train(data='coco8.yaml', epochs=100, imgsz=640)
results = model.train(data="coco8.yaml", epochs=100, imgsz=640)
```
=== "CLI"

View file

@ -48,10 +48,10 @@ To train a YOLOv8n model on the Global Wheat Head Dataset for 100 epochs with an
from ultralytics import YOLO
# Load a model
model = YOLO('yolov8n.pt') # load a pretrained model (recommended for training)
model = YOLO("yolov8n.pt") # load a pretrained model (recommended for training)
# Train the model
results = model.train(data='GlobalWheat2020.yaml', epochs=100, imgsz=640)
results = model.train(data="GlobalWheat2020.yaml", epochs=100, imgsz=640)
```
=== "CLI"

View file

@ -56,10 +56,10 @@ Here's how you can use these formats to train your model:
from ultralytics import YOLO
# Load a model
model = YOLO('yolov8n.pt') # load a pretrained model (recommended for training)
model = YOLO("yolov8n.pt") # load a pretrained model (recommended for training)
# Train the model
results = model.train(data='coco8.yaml', epochs=100, imgsz=640)
results = model.train(data="coco8.yaml", epochs=100, imgsz=640)
```
=== "CLI"
@ -103,7 +103,7 @@ You can easily convert labels from the popular COCO dataset format to the YOLO f
```python
from ultralytics.data.converter import convert_coco
convert_coco(labels_dir='path/to/coco/annotations/')
convert_coco(labels_dir="path/to/coco/annotations/")
```
This conversion tool can be used to convert the COCO dataset or any dataset in the COCO format to the Ultralytics YOLO format.

View file

@ -66,10 +66,10 @@ To train a YOLOv8n model on the LVIS dataset for 100 epochs with an image size o
from ultralytics import YOLO
# Load a model
model = YOLO('yolov8n.pt') # load a pretrained model (recommended for training)
model = YOLO("yolov8n.pt") # load a pretrained model (recommended for training)
# Train the model
results = model.train(data='lvis.yaml', epochs=100, imgsz=640)
results = model.train(data="lvis.yaml", epochs=100, imgsz=640)
```
=== "CLI"

View file

@ -48,10 +48,10 @@ To train a YOLOv8n model on the Objects365 dataset for 100 epochs with an image
from ultralytics import YOLO
# Load a model
model = YOLO('yolov8n.pt') # load a pretrained model (recommended for training)
model = YOLO("yolov8n.pt") # load a pretrained model (recommended for training)
# Train the model
results = model.train(data='Objects365.yaml', epochs=100, imgsz=640)
results = model.train(data="Objects365.yaml", epochs=100, imgsz=640)
```
=== "CLI"

View file

@ -88,10 +88,10 @@ To train a YOLOv8n model on the Open Images V7 dataset for 100 epochs with an im
from ultralytics import YOLO
# Load a COCO-pretrained YOLOv8n model
model = YOLO('yolov8n.pt')
model = YOLO("yolov8n.pt")
# Train the model on the Open Images V7 dataset
results = model.train(data='open-images-v7.yaml', epochs=100, imgsz=640)
results = model.train(data="open-images-v7.yaml", epochs=100, imgsz=640)
```
=== "CLI"

View file

@ -46,39 +46,40 @@ Dataset benchmarking evaluates machine learning model performance on specific da
=== "Python"
```python
from pathlib import Path
import shutil
import os
import shutil
from pathlib import Path
from ultralytics.utils.benchmarks import RF100Benchmark
# Initialize RF100Benchmark and set API key
benchmark = RF100Benchmark()
benchmark.set_key(api_key="YOUR_ROBOFLOW_API_KEY")
# Parse dataset and define file paths
names, cfg_yamls = benchmark.parse_dataset()
val_log_file = Path("ultralytics-benchmarks") / "validation.txt"
eval_log_file = Path("ultralytics-benchmarks") / "evaluation.txt"
# Run benchmarks on each dataset in RF100
for ind, path in enumerate(cfg_yamls):
path = Path(path)
if path.exists():
# Fix YAML file and run training
benchmark.fix_yaml(str(path))
os.system(f'yolo detect train data={path} model=yolov8s.pt epochs=1 batch=16')
os.system(f"yolo detect train data={path} model=yolov8s.pt epochs=1 batch=16")
# Run validation and evaluate
os.system(f'yolo detect val data={path} model=runs/detect/train/weights/best.pt > {val_log_file} 2>&1')
os.system(f"yolo detect val data={path} model=runs/detect/train/weights/best.pt > {val_log_file} 2>&1")
benchmark.evaluate(str(path), str(val_log_file), str(eval_log_file), ind)
# Remove the 'runs' directory
runs_dir = Path.cwd() / "runs"
shutil.rmtree(runs_dir)
else:
print("YAML file path does not exist")
continue
print("RF100 Benchmarking completed!")
```

View file

@ -50,10 +50,10 @@ To train a YOLOv8n model on the SKU-110K dataset for 100 epochs with an image si
from ultralytics import YOLO
# Load a model
model = YOLO('yolov8n.pt') # load a pretrained model (recommended for training)
model = YOLO("yolov8n.pt") # load a pretrained model (recommended for training)
# Train the model
results = model.train(data='SKU-110K.yaml', epochs=100, imgsz=640)
results = model.train(data="SKU-110K.yaml", epochs=100, imgsz=640)
```
=== "CLI"

View file

@ -46,10 +46,10 @@ To train a YOLOv8n model on the VisDrone dataset for 100 epochs with an image si
from ultralytics import YOLO
# Load a model
model = YOLO('yolov8n.pt') # load a pretrained model (recommended for training)
model = YOLO("yolov8n.pt") # load a pretrained model (recommended for training)
# Train the model
results = model.train(data='VisDrone.yaml', epochs=100, imgsz=640)
results = model.train(data="VisDrone.yaml", epochs=100, imgsz=640)
```
=== "CLI"

View file

@ -49,10 +49,10 @@ To train a YOLOv8n model on the VOC dataset for 100 epochs with an image size of
from ultralytics import YOLO
# Load a model
model = YOLO('yolov8n.pt') # load a pretrained model (recommended for training)
model = YOLO("yolov8n.pt") # load a pretrained model (recommended for training)
# Train the model
results = model.train(data='VOC.yaml', epochs=100, imgsz=640)
results = model.train(data="VOC.yaml", epochs=100, imgsz=640)
```
=== "CLI"

View file

@ -52,10 +52,10 @@ To train a model on the xView dataset for 100 epochs with an image size of 640,
from ultralytics import YOLO
# Load a model
model = YOLO('yolov8n.pt') # load a pretrained model (recommended for training)
model = YOLO("yolov8n.pt") # load a pretrained model (recommended for training)
# Train the model
results = model.train(data='xView.yaml', epochs=100, imgsz=640)
results = model.train(data="xView.yaml", epochs=100, imgsz=640)
```
=== "CLI"