Reformat Markdown code blocks (#12795)
Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> Co-authored-by: UltralyticsAssistant <web@ultralytics.com>
This commit is contained in:
parent
2af71d15a6
commit
fceea033ad
128 changed files with 1067 additions and 1018 deletions
|
|
@ -36,10 +36,10 @@ To train a YOLO model on the Caltech-101 dataset for 100 epochs, you can use the
|
|||
from ultralytics import YOLO
|
||||
|
||||
# Load a model
|
||||
model = YOLO('yolov8n-cls.pt') # load a pretrained model (recommended for training)
|
||||
model = YOLO("yolov8n-cls.pt") # load a pretrained model (recommended for training)
|
||||
|
||||
# Train the model
|
||||
results = model.train(data='caltech101', epochs=100, imgsz=416)
|
||||
results = model.train(data="caltech101", epochs=100, imgsz=416)
|
||||
```
|
||||
|
||||
=== "CLI"
|
||||
|
|
|
|||
|
|
@ -36,10 +36,10 @@ To train a YOLO model on the Caltech-256 dataset for 100 epochs, you can use the
|
|||
from ultralytics import YOLO
|
||||
|
||||
# Load a model
|
||||
model = YOLO('yolov8n-cls.pt') # load a pretrained model (recommended for training)
|
||||
model = YOLO("yolov8n-cls.pt") # load a pretrained model (recommended for training)
|
||||
|
||||
# Train the model
|
||||
results = model.train(data='caltech256', epochs=100, imgsz=416)
|
||||
results = model.train(data="caltech256", epochs=100, imgsz=416)
|
||||
```
|
||||
|
||||
=== "CLI"
|
||||
|
|
|
|||
|
|
@ -39,10 +39,10 @@ To train a YOLO model on the CIFAR-10 dataset for 100 epochs with an image size
|
|||
from ultralytics import YOLO
|
||||
|
||||
# Load a model
|
||||
model = YOLO('yolov8n-cls.pt') # load a pretrained model (recommended for training)
|
||||
model = YOLO("yolov8n-cls.pt") # load a pretrained model (recommended for training)
|
||||
|
||||
# Train the model
|
||||
results = model.train(data='cifar10', epochs=100, imgsz=32)
|
||||
results = model.train(data="cifar10", epochs=100, imgsz=32)
|
||||
```
|
||||
|
||||
=== "CLI"
|
||||
|
|
|
|||
|
|
@ -39,10 +39,10 @@ To train a YOLO model on the CIFAR-100 dataset for 100 epochs with an image size
|
|||
from ultralytics import YOLO
|
||||
|
||||
# Load a model
|
||||
model = YOLO('yolov8n-cls.pt') # load a pretrained model (recommended for training)
|
||||
model = YOLO("yolov8n-cls.pt") # load a pretrained model (recommended for training)
|
||||
|
||||
# Train the model
|
||||
results = model.train(data='cifar100', epochs=100, imgsz=32)
|
||||
results = model.train(data="cifar100", epochs=100, imgsz=32)
|
||||
```
|
||||
|
||||
=== "CLI"
|
||||
|
|
|
|||
|
|
@ -53,10 +53,10 @@ To train a CNN model on the Fashion-MNIST dataset for 100 epochs with an image s
|
|||
from ultralytics import YOLO
|
||||
|
||||
# Load a model
|
||||
model = YOLO('yolov8n-cls.pt') # load a pretrained model (recommended for training)
|
||||
model = YOLO("yolov8n-cls.pt") # load a pretrained model (recommended for training)
|
||||
|
||||
# Train the model
|
||||
results = model.train(data='fashion-mnist', epochs=100, imgsz=28)
|
||||
results = model.train(data="fashion-mnist", epochs=100, imgsz=28)
|
||||
```
|
||||
|
||||
=== "CLI"
|
||||
|
|
|
|||
|
|
@ -49,10 +49,10 @@ To train a deep learning model on the ImageNet dataset for 100 epochs with an im
|
|||
from ultralytics import YOLO
|
||||
|
||||
# Load a model
|
||||
model = YOLO('yolov8n-cls.pt') # load a pretrained model (recommended for training)
|
||||
model = YOLO("yolov8n-cls.pt") # load a pretrained model (recommended for training)
|
||||
|
||||
# Train the model
|
||||
results = model.train(data='imagenet', epochs=100, imgsz=224)
|
||||
results = model.train(data="imagenet", epochs=100, imgsz=224)
|
||||
```
|
||||
|
||||
=== "CLI"
|
||||
|
|
|
|||
|
|
@ -35,10 +35,10 @@ To test a deep learning model on the ImageNet10 dataset with an image size of 22
|
|||
from ultralytics import YOLO
|
||||
|
||||
# Load a model
|
||||
model = YOLO('yolov8n-cls.pt') # load a pretrained model (recommended for training)
|
||||
model = YOLO("yolov8n-cls.pt") # load a pretrained model (recommended for training)
|
||||
|
||||
# Train the model
|
||||
results = model.train(data='imagenet10', epochs=5, imgsz=224)
|
||||
results = model.train(data="imagenet10", epochs=5, imgsz=224)
|
||||
```
|
||||
|
||||
=== "CLI"
|
||||
|
|
|
|||
|
|
@ -37,10 +37,10 @@ To train a model on the ImageNette dataset for 100 epochs with a standard image
|
|||
from ultralytics import YOLO
|
||||
|
||||
# Load a model
|
||||
model = YOLO('yolov8n-cls.pt') # load a pretrained model (recommended for training)
|
||||
model = YOLO("yolov8n-cls.pt") # load a pretrained model (recommended for training)
|
||||
|
||||
# Train the model
|
||||
results = model.train(data='imagenette', epochs=100, imgsz=224)
|
||||
results = model.train(data="imagenette", epochs=100, imgsz=224)
|
||||
```
|
||||
|
||||
=== "CLI"
|
||||
|
|
@ -72,10 +72,10 @@ To use these datasets, simply replace 'imagenette' with 'imagenette160' or 'imag
|
|||
from ultralytics import YOLO
|
||||
|
||||
# Load a model
|
||||
model = YOLO('yolov8n-cls.pt') # load a pretrained model (recommended for training)
|
||||
model = YOLO("yolov8n-cls.pt") # load a pretrained model (recommended for training)
|
||||
|
||||
# Train the model with ImageNette160
|
||||
results = model.train(data='imagenette160', epochs=100, imgsz=160)
|
||||
results = model.train(data="imagenette160", epochs=100, imgsz=160)
|
||||
```
|
||||
|
||||
=== "CLI"
|
||||
|
|
@ -93,10 +93,10 @@ To use these datasets, simply replace 'imagenette' with 'imagenette160' or 'imag
|
|||
from ultralytics import YOLO
|
||||
|
||||
# Load a model
|
||||
model = YOLO('yolov8n-cls.pt') # load a pretrained model (recommended for training)
|
||||
model = YOLO("yolov8n-cls.pt") # load a pretrained model (recommended for training)
|
||||
|
||||
# Train the model with ImageNette320
|
||||
results = model.train(data='imagenette320', epochs=100, imgsz=320)
|
||||
results = model.train(data="imagenette320", epochs=100, imgsz=320)
|
||||
```
|
||||
|
||||
=== "CLI"
|
||||
|
|
|
|||
|
|
@ -34,10 +34,10 @@ To train a CNN model on the ImageWoof dataset for 100 epochs with an image size
|
|||
from ultralytics import YOLO
|
||||
|
||||
# Load a model
|
||||
model = YOLO('yolov8n-cls.pt') # load a pretrained model (recommended for training)
|
||||
model = YOLO("yolov8n-cls.pt") # load a pretrained model (recommended for training)
|
||||
|
||||
# Train the model
|
||||
results = model.train(data='imagewoof', epochs=100, imgsz=224)
|
||||
results = model.train(data="imagewoof", epochs=100, imgsz=224)
|
||||
```
|
||||
|
||||
=== "CLI"
|
||||
|
|
@ -63,13 +63,13 @@ To use these variants in your training, simply replace 'imagewoof' in the datase
|
|||
from ultralytics import YOLO
|
||||
|
||||
# Load a model
|
||||
model = YOLO('yolov8n-cls.pt') # load a pretrained model (recommended for training)
|
||||
model = YOLO("yolov8n-cls.pt") # load a pretrained model (recommended for training)
|
||||
|
||||
# For medium-sized dataset
|
||||
model.train(data='imagewoof320', epochs=100, imgsz=224)
|
||||
model.train(data="imagewoof320", epochs=100, imgsz=224)
|
||||
|
||||
# For small-sized dataset
|
||||
model.train(data='imagewoof160', epochs=100, imgsz=224)
|
||||
model.train(data="imagewoof160", epochs=100, imgsz=224)
|
||||
```
|
||||
|
||||
It's important to note that using smaller images will likely yield lower performance in terms of classification accuracy. However, it's an excellent way to iterate quickly in the early stages of model development and prototyping.
|
||||
|
|
|
|||
|
|
@ -86,10 +86,10 @@ This structured approach ensures that the model can effectively learn from well-
|
|||
from ultralytics import YOLO
|
||||
|
||||
# Load a model
|
||||
model = YOLO('yolov8n-cls.pt') # load a pretrained model (recommended for training)
|
||||
model = YOLO("yolov8n-cls.pt") # load a pretrained model (recommended for training)
|
||||
|
||||
# Train the model
|
||||
results = model.train(data='path/to/dataset', epochs=100, imgsz=640)
|
||||
results = model.train(data="path/to/dataset", epochs=100, imgsz=640)
|
||||
```
|
||||
=== "CLI"
|
||||
|
||||
|
|
|
|||
|
|
@ -42,10 +42,10 @@ To train a CNN model on the MNIST dataset for 100 epochs with an image size of 3
|
|||
from ultralytics import YOLO
|
||||
|
||||
# Load a model
|
||||
model = YOLO('yolov8n-cls.pt') # load a pretrained model (recommended for training)
|
||||
model = YOLO("yolov8n-cls.pt") # load a pretrained model (recommended for training)
|
||||
|
||||
# Train the model
|
||||
results = model.train(data='mnist', epochs=100, imgsz=32)
|
||||
results = model.train(data="mnist", epochs=100, imgsz=32)
|
||||
```
|
||||
|
||||
=== "CLI"
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue