ultralytics 8.0.196 instance-mean Segment loss (#5285)
Co-authored-by: Andy <39454881+yermandy@users.noreply.github.com>
This commit is contained in:
parent
7517667a33
commit
e7f0658744
72 changed files with 369 additions and 493 deletions
|
|
@ -6,8 +6,7 @@ keywords: Ultralytics, YOLOv5, model export, PyTorch, TorchScript, ONNX, OpenVIN
|
|||
|
||||
# TFLite, ONNX, CoreML, TensorRT Export
|
||||
|
||||
📚 This guide explains how to export a trained YOLOv5 🚀 model from PyTorch to ONNX and TorchScript formats.
|
||||
UPDATED 8 December 2022.
|
||||
📚 This guide explains how to export a trained YOLOv5 🚀 model from PyTorch to ONNX and TorchScript formats. UPDATED 8 December 2022.
|
||||
|
||||
## Before You Start
|
||||
|
||||
|
|
@ -25,8 +24,7 @@ For [TensorRT](https://developer.nvidia.com/tensorrt) export example (requires G
|
|||
|
||||
YOLOv5 inference is officially supported in 11 formats:
|
||||
|
||||
💡 ProTip: Export to ONNX or OpenVINO for up to 3x CPU speedup. See [CPU Benchmarks](https://github.com/ultralytics/yolov5/pull/6613).
|
||||
💡 ProTip: Export to TensorRT for up to 5x GPU speedup. See [GPU Benchmarks](https://github.com/ultralytics/yolov5/pull/6963).
|
||||
💡 ProTip: Export to ONNX or OpenVINO for up to 3x CPU speedup. See [CPU Benchmarks](https://github.com/ultralytics/yolov5/pull/6613). 💡 ProTip: Export to TensorRT for up to 5x GPU speedup. See [GPU Benchmarks](https://github.com/ultralytics/yolov5/pull/6963).
|
||||
|
||||
| Format | `export.py --include` | Model |
|
||||
|:---------------------------------------------------------------------------|:----------------------|:--------------------------|
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue