ultralytics 8.0.196 instance-mean Segment loss (#5285)
Co-authored-by: Andy <39454881+yermandy@users.noreply.github.com>
This commit is contained in:
parent
7517667a33
commit
e7f0658744
72 changed files with 369 additions and 493 deletions
|
|
@ -14,9 +14,9 @@ In the world of machine learning and computer vision, the process of making sens
|
|||
|
||||
<p align="center">
|
||||
<br>
|
||||
<iframe width="720" height="405" src="https://www.youtube.com/embed/QtsI0TnwDZs?si=ljesw75cMO2Eas14"
|
||||
title="YouTube video player" frameborder="0"
|
||||
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
|
||||
<iframe width="720" height="405" src="https://www.youtube.com/embed/QtsI0TnwDZs?si=ljesw75cMO2Eas14"
|
||||
title="YouTube video player" frameborder="0"
|
||||
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
|
||||
allowfullscreen>
|
||||
</iframe>
|
||||
<br>
|
||||
|
|
@ -415,10 +415,10 @@ All Ultralytics `predict()` calls will return a list of `Results` objects:
|
|||
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
|
||||
|
||||
# Load a pretrained YOLOv8n model
|
||||
model = YOLO('yolov8n.pt')
|
||||
|
||||
|
||||
# Run inference on an image
|
||||
results = model('bus.jpg') # list of 1 Results object
|
||||
results = model(['bus.jpg', 'zidane.jpg']) # list of 2 Results objects
|
||||
|
|
@ -467,13 +467,13 @@ For more details see the `Results` class [documentation](../reference/engine/res
|
|||
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
|
||||
|
||||
# Load a pretrained YOLOv8n model
|
||||
model = YOLO('yolov8n.pt')
|
||||
|
||||
|
||||
# Run inference on an image
|
||||
results = model('bus.jpg') # results list
|
||||
|
||||
|
||||
# View results
|
||||
for r in results:
|
||||
print(r.boxes) # print the Boxes object containing the detection bounding boxes
|
||||
|
|
@ -505,13 +505,13 @@ For more details see the `Boxes` class [documentation](../reference/engine/resul
|
|||
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
|
||||
|
||||
# Load a pretrained YOLOv8n-seg Segment model
|
||||
model = YOLO('yolov8n-seg.pt')
|
||||
|
||||
|
||||
# Run inference on an image
|
||||
results = model('bus.jpg') # results list
|
||||
|
||||
|
||||
# View results
|
||||
for r in results:
|
||||
print(r.masks) # print the Masks object containing the detected instance masks
|
||||
|
|
@ -538,13 +538,13 @@ For more details see the `Masks` class [documentation](../reference/engine/resul
|
|||
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
|
||||
|
||||
# Load a pretrained YOLOv8n-pose Pose model
|
||||
model = YOLO('yolov8n-pose.pt')
|
||||
|
||||
|
||||
# Run inference on an image
|
||||
results = model('bus.jpg') # results list
|
||||
|
||||
|
||||
# View results
|
||||
for r in results:
|
||||
print(r.keypoints) # print the Keypoints object containing the detected keypoints
|
||||
|
|
@ -572,13 +572,13 @@ For more details see the `Keypoints` class [documentation](../reference/engine/r
|
|||
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
|
||||
|
||||
# Load a pretrained YOLOv8n-cls Classify model
|
||||
model = YOLO('yolov8n-cls.pt')
|
||||
|
||||
|
||||
# Run inference on an image
|
||||
results = model('bus.jpg') # results list
|
||||
|
||||
|
||||
# View results
|
||||
for r in results:
|
||||
print(r.probs) # print the Probs object containing the detected class probabilities
|
||||
|
|
@ -622,9 +622,9 @@ You can use the `plot()` method of a `Result` objects to visualize predictions.
|
|||
im.show() # show image
|
||||
im.save('results.jpg') # save image
|
||||
```
|
||||
|
||||
|
||||
The `plot()` method supports the following arguments:
|
||||
|
||||
|
||||
| Argument | Type | Description | Default |
|
||||
|--------------|-----------------|--------------------------------------------------------------------------------|---------------|
|
||||
| `conf` | `bool` | Whether to plot the detection confidence score. | `True` |
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue