ultralytics 8.0.196 instance-mean Segment loss (#5285)
Co-authored-by: Andy <39454881+yermandy@users.noreply.github.com>
This commit is contained in:
parent
7517667a33
commit
e7f0658744
72 changed files with 369 additions and 493 deletions
|
|
@ -55,7 +55,7 @@ To perform object detection on an image, use the `predict` method as shown below
|
|||
|
||||
# Run inference on an image
|
||||
everything_results = model(source, device='cpu', retina_masks=True, imgsz=1024, conf=0.4, iou=0.9)
|
||||
|
||||
|
||||
# Prepare a Prompt Process object
|
||||
prompt_process = FastSAMPrompt(source, everything_results, device='cpu')
|
||||
|
||||
|
|
@ -74,7 +74,7 @@ To perform object detection on an image, use the `predict` method as shown below
|
|||
ann = prompt_process.point_prompt(points=[[200, 200]], pointlabel=[1])
|
||||
prompt_process.plot(annotations=ann, output='./')
|
||||
```
|
||||
|
||||
|
||||
=== "CLI"
|
||||
```bash
|
||||
# Load a FastSAM model and segment everything with it
|
||||
|
|
|
|||
|
|
@ -66,10 +66,10 @@ You can download the model [here](https://github.com/ChaoningZhang/MobileSAM/blo
|
|||
=== "Python"
|
||||
```python
|
||||
from ultralytics import SAM
|
||||
|
||||
|
||||
# Load the model
|
||||
model = SAM('mobile_sam.pt')
|
||||
|
||||
|
||||
# Predict a segment based on a point prompt
|
||||
model.predict('ultralytics/assets/zidane.jpg', points=[900, 370], labels=[1])
|
||||
```
|
||||
|
|
@ -81,10 +81,10 @@ You can download the model [here](https://github.com/ChaoningZhang/MobileSAM/blo
|
|||
=== "Python"
|
||||
```python
|
||||
from ultralytics import SAM
|
||||
|
||||
|
||||
# Load the model
|
||||
model = SAM('mobile_sam.pt')
|
||||
|
||||
|
||||
# Predict a segment based on a box prompt
|
||||
model.predict('ultralytics/assets/zidane.jpg', bboxes=[439, 437, 524, 709])
|
||||
```
|
||||
|
|
|
|||
|
|
@ -54,7 +54,7 @@ You can use RT-DETR for object detection tasks using the `ultralytics` pip packa
|
|||
|
||||
=== "CLI"
|
||||
|
||||
```bash
|
||||
```bash
|
||||
# Load a COCO-pretrained RT-DETR-l model and train it on the COCO8 example dataset for 100 epochs
|
||||
yolo train model=rtdetr-l.pt data=coco8.yaml epochs=100 imgsz=640
|
||||
|
||||
|
|
|
|||
|
|
@ -152,28 +152,27 @@ This comparison shows the order-of-magnitude differences in the model sizes and
|
|||
|
||||
Tests run on a 2023 Apple M2 Macbook with 16GB of RAM. To reproduce this test:
|
||||
|
||||
|
||||
!!! example ""
|
||||
|
||||
=== "Python"
|
||||
```python
|
||||
from ultralytics import FastSAM, SAM, YOLO
|
||||
|
||||
|
||||
# Profile SAM-b
|
||||
model = SAM('sam_b.pt')
|
||||
model.info()
|
||||
model('ultralytics/assets')
|
||||
|
||||
|
||||
# Profile MobileSAM
|
||||
model = SAM('mobile_sam.pt')
|
||||
model.info()
|
||||
model('ultralytics/assets')
|
||||
|
||||
|
||||
# Profile FastSAM-s
|
||||
model = FastSAM('FastSAM-s.pt')
|
||||
model.info()
|
||||
model('ultralytics/assets')
|
||||
|
||||
|
||||
# Profile YOLOv8n-seg
|
||||
model = YOLO('yolov8n-seg.pt')
|
||||
model.info()
|
||||
|
|
@ -193,7 +192,7 @@ To auto-annotate your dataset with the Ultralytics framework, use the `auto_anno
|
|||
=== "Python"
|
||||
```python
|
||||
from ultralytics.data.annotator import auto_annotate
|
||||
|
||||
|
||||
auto_annotate(data="path/to/images", det_model="yolov8x.pt", sam_model='sam_b.pt')
|
||||
```
|
||||
|
||||
|
|
|
|||
|
|
@ -12,8 +12,7 @@ keywords: Meituan YOLOv6, object detection, Ultralytics, YOLOv6 docs, Bi-directi
|
|||
|
||||

|
||||

|
||||
**Overview of YOLOv6.** Model architecture diagram showing the redesigned network components and training strategies that have led to significant performance improvements. (a) The neck of YOLOv6 (N and S are shown). Note for M/L, RepBlocks is replaced with CSPStackRep. (b) The
|
||||
structure of a BiC module. (c) A SimCSPSPPF block. ([source](https://arxiv.org/pdf/2301.05586.pdf)).
|
||||
**Overview of YOLOv6.** Model architecture diagram showing the redesigned network components and training strategies that have led to significant performance improvements. (a) The neck of YOLOv6 (N and S are shown). Note for M/L, RepBlocks is replaced with CSPStackRep. (b) The structure of a BiC module. (c) A SimCSPSPPF block. ([source](https://arxiv.org/pdf/2301.05586.pdf)).
|
||||
|
||||
### Key Features
|
||||
|
||||
|
|
|
|||
|
|
@ -51,7 +51,7 @@ YOLOv8 is the latest iteration in the YOLO series of real-time object detectors,
|
|||
=== "Detection (Open Images V7)"
|
||||
|
||||
See [Detection Docs](https://docs.ultralytics.com/tasks/detect/) for usage examples with these models trained on [Open Image V7](https://docs.ultralytics.com/datasets/detect/open-images-v7/), which include 600 pre-trained classes.
|
||||
|
||||
|
||||
| Model | size<br><sup>(pixels) | mAP<sup>val<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>A100 TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
|
||||
| ----------------------------------------------------------------------------------------- | --------------------- | -------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
|
||||
| [YOLOv8n](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n-oiv7.pt) | 640 | 18.4 | 142.4 | 1.21 | 3.5 | 10.5 |
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue