ultralytics 8.0.196 instance-mean Segment loss (#5285)

Co-authored-by: Andy <39454881+yermandy@users.noreply.github.com>
This commit is contained in:
Glenn Jocher 2023-10-09 20:08:39 +02:00 committed by GitHub
parent 7517667a33
commit e7f0658744
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
72 changed files with 369 additions and 493 deletions

View file

@ -10,9 +10,9 @@ The [Triton Inference Server](https://developer.nvidia.com/nvidia-triton-inferen
<p align="center">
<br>
<iframe width="720" height="405" src="https://www.youtube.com/embed/NQDtfSi5QF4"
title="Getting Started with NVIDIA Triton Inference Server" frameborder="0"
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
<iframe width="720" height="405" src="https://www.youtube.com/embed/NQDtfSi5QF4"
title="Getting Started with NVIDIA Triton Inference Server" frameborder="0"
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
allowfullscreen>
</iframe>
<br>
@ -60,11 +60,11 @@ The Triton Model Repository is a storage location where Triton can access and lo
```python
from pathlib import Path
# Define paths
triton_repo_path = Path('tmp') / 'triton_repo'
triton_model_path = triton_repo_path / 'yolo'
# Create directories
(triton_model_path / '1').mkdir(parents=True, exist_ok=True)
```
@ -73,10 +73,10 @@ The Triton Model Repository is a storage location where Triton can access and lo
```python
from pathlib import Path
# Move ONNX model to Triton Model path
Path(onnx_file).rename(triton_model_path / '1' / 'model.onnx')
# Create config file
(triton_model_path / 'config.pdtxt').touch()
```
@ -134,4 +134,4 @@ subprocess.call(f'docker kill {container_id}', shell=True)
---
By following the above steps, you can deploy and run Ultralytics YOLOv8 models efficiently on Triton Inference Server, providing a scalable and high-performance solution for deep learning inference tasks. If you face any issues or have further queries, refer to the [official Triton documentation](https://docs.nvidia.com/deeplearning/triton-inference-server/user-guide/docs/index.html) or reach out to the Ultralytics community for support.
By following the above steps, you can deploy and run Ultralytics YOLOv8 models efficiently on Triton Inference Server, providing a scalable and high-performance solution for deep learning inference tasks. If you face any issues or have further queries, refer to the [official Triton documentation](https://docs.nvidia.com/deeplearning/triton-inference-server/user-guide/docs/index.html) or reach out to the Ultralytics community for support.