ultralytics 8.0.196 instance-mean Segment loss (#5285)
Co-authored-by: Andy <39454881+yermandy@users.noreply.github.com>
This commit is contained in:
parent
7517667a33
commit
e7f0658744
72 changed files with 369 additions and 493 deletions
|
|
@ -75,10 +75,10 @@ Here's how to use the `model.tune()` method to utilize the `Tuner` class for hyp
|
|||
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
|
||||
|
||||
# Initialize the YOLO model
|
||||
model = YOLO('yolov8n.pt')
|
||||
|
||||
|
||||
# Tune hyperparameters on COCO8 for 30 epochs
|
||||
model.tune(data='coco8.yaml', epochs=30, iterations=300, optimizer='AdamW', plots=False, save=False, val=False)
|
||||
```
|
||||
|
|
@ -123,7 +123,7 @@ This YAML file contains the best-performing hyperparameters found during the tun
|
|||
# Best fitness metrics are {'metrics/precision(B)': 0.87247, 'metrics/recall(B)': 0.71387, 'metrics/mAP50(B)': 0.79106, 'metrics/mAP50-95(B)': 0.62651, 'val/box_loss': 2.79884, 'val/cls_loss': 2.72386, 'val/dfl_loss': 0.68503, 'fitness': 0.64297}
|
||||
# Best fitness model is /usr/src/ultralytics/runs/detect/train498
|
||||
# Best fitness hyperparameters are printed below.
|
||||
|
||||
|
||||
lr0: 0.00269
|
||||
lrf: 0.00288
|
||||
momentum: 0.73375
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue