Docs Prettier reformat (#13483)
Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> Co-authored-by: UltralyticsAssistant <web@ultralytics.com>
This commit is contained in:
parent
2f2e81614f
commit
e5185ccf63
90 changed files with 763 additions and 742 deletions
|
|
@ -80,7 +80,7 @@ Validate trained YOLOv8n model accuracy on the COCO8 dataset. No argument need t
|
|||
When validating YOLO models, several arguments can be fine-tuned to optimize the evaluation process. These arguments control aspects such as input image size, batch processing, and performance thresholds. Below is a detailed breakdown of each argument to help you customize your validation settings effectively.
|
||||
|
||||
| Argument | Type | Default | Description |
|
||||
|---------------|---------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
||||
| ------------- | ------- | ------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `data` | `str` | `None` | Specifies the path to the dataset configuration file (e.g., `coco8.yaml`). This file includes paths to validation data, class names, and number of classes. |
|
||||
| `imgsz` | `int` | `640` | Defines the size of input images. All images are resized to this dimension before processing. |
|
||||
| `batch` | `int` | `16` | Sets the number of images per batch. Use `-1` for AutoBatch, which automatically adjusts based on GPU memory availability. |
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue