Docs Prettier reformat (#13483)
Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> Co-authored-by: UltralyticsAssistant <web@ultralytics.com>
This commit is contained in:
parent
2f2e81614f
commit
e5185ccf63
90 changed files with 763 additions and 742 deletions
|
|
@ -61,7 +61,7 @@ To install the required packages, run:
|
|||
The `tune()` method in YOLOv8 provides an easy-to-use interface for hyperparameter tuning with Ray Tune. It accepts several arguments that allow you to customize the tuning process. Below is a detailed explanation of each parameter:
|
||||
|
||||
| Parameter | Type | Description | Default Value |
|
||||
|-----------------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
|
||||
| --------------- | ---------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | ------------- |
|
||||
| `data` | `str` | The dataset configuration file (in YAML format) to run the tuner on. This file should specify the training and validation data paths, as well as other dataset-specific settings. | |
|
||||
| `space` | `dict, optional` | A dictionary defining the hyperparameter search space for Ray Tune. Each key corresponds to a hyperparameter name, and the value specifies the range of values to explore during tuning. If not provided, YOLOv8 uses a default search space with various hyperparameters. | |
|
||||
| `grace_period` | `int, optional` | The grace period in epochs for the [ASHA scheduler](https://docs.ray.io/en/latest/tune/api/schedulers.html) in Ray Tune. The scheduler will not terminate any trial before this number of epochs, allowing the model to have some minimum training before making a decision on early stopping. | 10 |
|
||||
|
|
@ -76,7 +76,7 @@ By customizing these parameters, you can fine-tune the hyperparameter optimizati
|
|||
The following table lists the default search space parameters for hyperparameter tuning in YOLOv8 with Ray Tune. Each parameter has a specific value range defined by `tune.uniform()`.
|
||||
|
||||
| Parameter | Value Range | Description |
|
||||
|-------------------|----------------------------|------------------------------------------|
|
||||
| ----------------- | -------------------------- | ---------------------------------------- |
|
||||
| `lr0` | `tune.uniform(1e-5, 1e-1)` | Initial learning rate |
|
||||
| `lrf` | `tune.uniform(0.01, 1.0)` | Final learning rate factor |
|
||||
| `momentum` | `tune.uniform(0.6, 0.98)` | Momentum |
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue