Optimize Docs images (#15900)

Signed-off-by: UltralyticsAssistant <web@ultralytics.com>
Co-authored-by: UltralyticsAssistant <web@ultralytics.com>
Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
This commit is contained in:
Muhammad Rizwan Munawar 2024-08-30 05:52:10 +05:00 committed by GitHub
parent 0f9f7b806c
commit cfebb5f26b
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
174 changed files with 537 additions and 537 deletions

View file

@ -18,7 +18,7 @@ YOLOv5's architecture consists of three main parts:
The structure of the model is depicted in the image below. The model structure details can be found in `yolov5l.yaml`.
![yolov5](https://user-images.githubusercontent.com/31005897/172404576-c260dcf9-76bb-4bc8-b6a9-f2d987792583.png)
![yolov5](https://github.com/ultralytics/docs/releases/download/0/yolov5-model-structure.avif)
YOLOv5 introduces some minor changes compared to its predecessors:
@ -108,29 +108,29 @@ YOLOv5 employs various data augmentation techniques to improve the model's abili
- **Mosaic Augmentation**: An image processing technique that combines four training images into one in ways that encourage object detection models to better handle various object scales and translations.
![mosaic](https://user-images.githubusercontent.com/31005897/159109235-c7aad8f2-1d4f-41f9-8d5f-b2fde6f2885e.png)
![mosaic](https://github.com/ultralytics/docs/releases/download/0/mosaic-augmentation.avif)
- **Copy-Paste Augmentation**: An innovative data augmentation method that copies random patches from an image and pastes them onto another randomly chosen image, effectively generating a new training sample.
![copy-paste](https://user-images.githubusercontent.com/31005897/159116277-91b45033-6bec-4f82-afc4-41138866628e.png)
![copy-paste](https://github.com/ultralytics/docs/releases/download/0/copy-paste.avif)
- **Random Affine Transformations**: This includes random rotation, scaling, translation, and shearing of the images.
![random-affine](https://user-images.githubusercontent.com/31005897/159109326-45cd5acb-14fa-43e7-9235-0f21b0021c7d.png)
![random-affine](https://github.com/ultralytics/docs/releases/download/0/random-affine-transformations.avif)
- **MixUp Augmentation**: A method that creates composite images by taking a linear combination of two images and their associated labels.
![mixup](https://user-images.githubusercontent.com/31005897/159109361-3b24333b-f481-478b-ae00-df7838f0b5cd.png)
![mixup](https://github.com/ultralytics/docs/releases/download/0/mixup.avif)
- **Albumentations**: A powerful library for image augmenting that supports a wide variety of augmentation techniques.
- **HSV Augmentation**: Random changes to the Hue, Saturation, and Value of the images.
![hsv](https://user-images.githubusercontent.com/31005897/159109407-83d100ba-1aba-4f4b-aa03-4f048f815981.png)
![hsv](https://github.com/ultralytics/docs/releases/download/0/hsv-augmentation.avif)
- **Random Horizontal Flip**: An augmentation method that randomly flips images horizontally.
![horizontal-flip](https://user-images.githubusercontent.com/31005897/159109429-0d44619a-a76a-49eb-bfc0-6709860c043e.png)
![horizontal-flip](https://github.com/ultralytics/docs/releases/download/0/random-horizontal-flip.avif)
## 3. Training Strategies