Optimize Docs images (#15900)
Signed-off-by: UltralyticsAssistant <web@ultralytics.com> Co-authored-by: UltralyticsAssistant <web@ultralytics.com> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
This commit is contained in:
parent
0f9f7b806c
commit
cfebb5f26b
174 changed files with 537 additions and 537 deletions
|
|
@ -22,15 +22,15 @@ Training YOLOv8 models on Kaggle is simple and efficient, thanks to the platform
|
|||
|
||||
To get started, access the [Kaggle YOLOv8 Notebook](https://www.kaggle.com/code/ultralytics/yolov8). Kaggle's environment comes with pre-installed libraries like TensorFlow and PyTorch, making the setup process hassle-free.
|
||||
|
||||

|
||||

|
||||
|
||||
Once you sign in to your Kaggle account, you can click on the option to copy and edit the code, select a GPU under the accelerator settings, and run the notebook's cells to begin training your model. For a detailed understanding of the model training process and best practices, refer to our [YOLOv8 Model Training guide](../modes/train.md).
|
||||
|
||||

|
||||

|
||||
|
||||
On the [official YOLOv8 Kaggle notebook page](https://www.kaggle.com/code/ultralytics/yolov8), if you click on the three dots in the upper right-hand corner, you'll notice more options will pop up.
|
||||
|
||||

|
||||

|
||||
|
||||
These options include:
|
||||
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue