Optimize Docs images (#15900)

Signed-off-by: UltralyticsAssistant <web@ultralytics.com>
Co-authored-by: UltralyticsAssistant <web@ultralytics.com>
Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
This commit is contained in:
Muhammad Rizwan Munawar 2024-08-30 05:52:10 +05:00 committed by GitHub
parent 0f9f7b806c
commit cfebb5f26b
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
174 changed files with 537 additions and 537 deletions

View file

@ -8,7 +8,7 @@ keywords: DOTA dataset, object detection, aerial images, oriented bounding boxes
[DOTA](https://captain-whu.github.io/DOTA/index.html) stands as a specialized dataset, emphasizing object detection in aerial images. Originating from the DOTA series of datasets, it offers annotated images capturing a diverse array of aerial scenes with Oriented Bounding Boxes (OBB).
![DOTA classes visual](https://user-images.githubusercontent.com/26833433/259461765-72fdd0d8-266b-44a9-8199-199329bf5ca9.jpg)
![DOTA classes visual](https://github.com/ultralytics/docs/releases/download/0/dota-classes-visual.avif)
## Key Features
@ -126,7 +126,7 @@ To train a model on the DOTA v1 dataset, you can utilize the following code snip
Having a glance at the dataset illustrates its depth:
![Dataset sample image](https://captain-whu.github.io/DOTA/images/instances-DOTA.jpg)
![Dataset sample image](https://github.com/ultralytics/docs/releases/download/0/instances-DOTA.avif)
- **DOTA examples**: This snapshot underlines the complexity of aerial scenes and the significance of Oriented Bounding Box annotations, capturing objects in their natural orientation.

View file

@ -51,7 +51,7 @@ To train a YOLOv8n-obb model on the DOTA8 dataset for 100 epochs with an image s
Here are some examples of images from the DOTA8 dataset, along with their corresponding annotations:
<img src="https://github.com/Laughing-q/assets/assets/61612323/965d3ff7-5b9b-4add-b62e-9795921b60de" alt="Dataset sample image" width="800">
<img src="https://github.com/ultralytics/docs/releases/download/0/mosaiced-training-batch.avif" alt="Dataset sample image" width="800">
- **Mosaiced Image**: This image demonstrates a training batch composed of mosaiced dataset images. Mosaicing is a technique used during training that combines multiple images into a single image to increase the variety of objects and scenes within each training batch. This helps improve the model's ability to generalize to different object sizes, aspect ratios, and contexts.

View file

@ -20,7 +20,7 @@ class_index x1 y1 x2 y2 x3 y3 x4 y4
Internally, YOLO processes losses and outputs in the `xywhr` format, which represents the bounding box's center point (xy), width, height, and rotation.
<p align="center"><img width="800" src="https://user-images.githubusercontent.com/26833433/259471881-59020fe2-09a4-4dcc-acce-9b0f7cfa40ee.png" alt="OBB format examples"></p>
<p align="center"><img width="800" src="https://github.com/ultralytics/docs/releases/download/0/obb-format-examples.avif" alt="OBB format examples"></p>
An example of a `*.txt` label file for the above image, which contains an object of class `0` in OBB format, could look like: