ultralytics 8.3.65 Rockchip RKNN Integration for Ultralytics YOLO models (#16308)

Signed-off-by: Francesco Mattioli <Francesco.mttl@gmail.com>
Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com>
Co-authored-by: Burhan <62214284+Burhan-Q@users.noreply.github.com>
Co-authored-by: Lakshantha Dissanayake <lakshantha@ultralytics.com>
Co-authored-by: Burhan <Burhan-Q@users.noreply.github.com>
Co-authored-by: Laughing-q <1185102784@qq.com>
Co-authored-by: UltralyticsAssistant <web@ultralytics.com>
Co-authored-by: Laughing <61612323+Laughing-q@users.noreply.github.com>
Co-authored-by: Ultralytics Assistant <135830346+UltralyticsAssistant@users.noreply.github.com>
Co-authored-by: Lakshantha Dissanayake <lakshanthad@yahoo.com>
Co-authored-by: Francesco Mattioli <Francesco.mttl@gmail.com>
Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
This commit is contained in:
Ivor Zhu 2025-01-20 20:25:54 -05:00 committed by GitHub
parent 617dea8e25
commit b5e0cee943
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
41 changed files with 390 additions and 118 deletions

View file

@ -1,6 +1,6 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
__version__ = "8.3.64"
__version__ = "8.3.65"
import os

View file

@ -19,6 +19,7 @@ PaddlePaddle | `paddle` | yolo11n_paddle_model/
MNN | `mnn` | yolo11n.mnn
NCNN | `ncnn` | yolo11n_ncnn_model/
IMX | `imx` | yolo11n_imx_model/
RKNN | `rknn` | yolo11n_rknn_model/
Requirements:
$ pip install "ultralytics[export]"
@ -78,11 +79,13 @@ from ultralytics.nn.tasks import DetectionModel, SegmentationModel, WorldModel
from ultralytics.utils import (
ARM64,
DEFAULT_CFG,
IS_COLAB,
IS_JETSON,
LINUX,
LOGGER,
MACOS,
PYTHON_VERSION,
RKNN_CHIPS,
ROOT,
WINDOWS,
__version__,
@ -122,6 +125,7 @@ def export_formats():
["MNN", "mnn", ".mnn", True, True, ["batch", "half", "int8"]],
["NCNN", "ncnn", "_ncnn_model", True, True, ["batch", "half"]],
["IMX", "imx", "_imx_model", True, True, ["int8"]],
["RKNN", "rknn", "_rknn_model", False, False, ["batch", "name"]],
]
return dict(zip(["Format", "Argument", "Suffix", "CPU", "GPU", "Arguments"], zip(*x)))
@ -226,22 +230,10 @@ class Exporter:
flags = [x == fmt for x in fmts]
if sum(flags) != 1:
raise ValueError(f"Invalid export format='{fmt}'. Valid formats are {fmts}")
(
jit,
onnx,
xml,
engine,
coreml,
saved_model,
pb,
tflite,
edgetpu,
tfjs,
paddle,
mnn,
ncnn,
imx,
) = flags # export booleans
(jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle, mnn, ncnn, imx, rknn) = (
flags # export booleans
)
is_tf_format = any((saved_model, pb, tflite, edgetpu, tfjs))
# Device
@ -277,6 +269,16 @@ class Exporter:
if self.args.optimize:
assert not ncnn, "optimize=True not compatible with format='ncnn', i.e. use optimize=False"
assert self.device.type == "cpu", "optimize=True not compatible with cuda devices, i.e. use device='cpu'"
if rknn:
if not self.args.name:
LOGGER.warning(
"WARNING ⚠️ Rockchip RKNN export requires a missing 'name' arg for processor type. Using default name='rk3588'."
)
self.args.name = "rk3588"
self.args.name = self.args.name.lower()
assert self.args.name in RKNN_CHIPS, (
f"Invalid processor name '{self.args.name}' for Rockchip RKNN export. Valid names are {RKNN_CHIPS}."
)
if self.args.int8 and tflite:
assert not getattr(model, "end2end", False), "TFLite INT8 export not supported for end2end models."
if edgetpu:
@ -417,6 +419,8 @@ class Exporter:
f[12], _ = self.export_ncnn()
if imx:
f[13], _ = self.export_imx()
if rknn:
f[14], _ = self.export_rknn()
# Finish
f = [str(x) for x in f if x] # filter out '' and None
@ -746,7 +750,7 @@ class Exporter:
model = IOSDetectModel(self.model, self.im) if self.args.nms else self.model
else:
if self.args.nms:
LOGGER.warning(f"{prefix} WARNING ⚠️ 'nms=True' is only available for Detect models like 'yolov8n.pt'.")
LOGGER.warning(f"{prefix} WARNING ⚠️ 'nms=True' is only available for Detect models like 'yolo11n.pt'.")
# TODO CoreML Segment and Pose model pipelining
model = self.model
@ -1141,6 +1145,35 @@ class Exporter:
return f, None
@try_export
def export_rknn(self, prefix=colorstr("RKNN:")):
"""YOLO RKNN model export."""
LOGGER.info(f"\n{prefix} starting export with rknn-toolkit2...")
check_requirements("rknn-toolkit2")
if IS_COLAB:
# Prevent 'exit' from closing the notebook https://github.com/airockchip/rknn-toolkit2/issues/259
import builtins
builtins.exit = lambda: None
from rknn.api import RKNN
f, _ = self.export_onnx()
platform = self.args.name
export_path = Path(f"{Path(f).stem}_rknn_model")
export_path.mkdir(exist_ok=True)
rknn = RKNN(verbose=False)
rknn.config(mean_values=[[0, 0, 0]], std_values=[[255, 255, 255]], target_platform=platform)
_ = rknn.load_onnx(model=f)
_ = rknn.build(do_quantization=False) # TODO: Add quantization support
f = f.replace(".onnx", f"-{platform}.rknn")
_ = rknn.export_rknn(f"{export_path / f}")
yaml_save(export_path / "metadata.yaml", self.metadata)
return export_path, None
def export_imx(self, prefix=colorstr("IMX:")):
"""YOLO IMX export."""
gptq = False

View file

@ -194,7 +194,7 @@ class Model(nn.Module):
(bool): True if the model string is a valid Triton Server URL, False otherwise.
Examples:
>>> Model.is_triton_model("http://localhost:8000/v2/models/yolov8n")
>>> Model.is_triton_model("http://localhost:8000/v2/models/yolo11n")
True
>>> Model.is_triton_model("yolo11n.pt")
False
@ -247,7 +247,7 @@ class Model(nn.Module):
Examples:
>>> model = Model()
>>> model._new("yolov8n.yaml", task="detect", verbose=True)
>>> model._new("yolo11n.yaml", task="detect", verbose=True)
"""
cfg_dict = yaml_model_load(cfg)
self.cfg = cfg
@ -283,7 +283,7 @@ class Model(nn.Module):
"""
if weights.lower().startswith(("https://", "http://", "rtsp://", "rtmp://", "tcp://")):
weights = checks.check_file(weights, download_dir=SETTINGS["weights_dir"]) # download and return local file
weights = checks.check_model_file_from_stem(weights) # add suffix, i.e. yolov8n -> yolov8n.pt
weights = checks.check_model_file_from_stem(weights) # add suffix, i.e. yolo11n -> yolo11n.pt
if Path(weights).suffix == ".pt":
self.model, self.ckpt = attempt_load_one_weight(weights)
@ -313,7 +313,7 @@ class Model(nn.Module):
Examples:
>>> model = Model("yolo11n.pt")
>>> model._check_is_pytorch_model() # No error raised
>>> model = Model("yolov8n.onnx")
>>> model = Model("yolo11n.onnx")
>>> model._check_is_pytorch_model() # Raises TypeError
"""
pt_str = isinstance(self.model, (str, Path)) and Path(self.model).suffix == ".pt"
@ -323,7 +323,7 @@ class Model(nn.Module):
f"model='{self.model}' should be a *.pt PyTorch model to run this method, but is a different format. "
f"PyTorch models can train, val, predict and export, i.e. 'model.train(data=...)', but exported "
f"formats like ONNX, TensorRT etc. only support 'predict' and 'val' modes, "
f"i.e. 'yolo predict model=yolov8n.onnx'.\nTo run CUDA or MPS inference please pass the device "
f"i.e. 'yolo predict model=yolo11n.onnx'.\nTo run CUDA or MPS inference please pass the device "
f"argument directly in your inference command, i.e. 'model.predict(source=..., device=0)'"
)

View file

@ -3,7 +3,7 @@
Run prediction on images, videos, directories, globs, YouTube, webcam, streams, etc.
Usage - sources:
$ yolo mode=predict model=yolov8n.pt source=0 # webcam
$ yolo mode=predict model=yolo11n.pt source=0 # webcam
img.jpg # image
vid.mp4 # video
screen # screenshot
@ -15,19 +15,21 @@ Usage - sources:
'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP, TCP stream
Usage - formats:
$ yolo mode=predict model=yolov8n.pt # PyTorch
yolov8n.torchscript # TorchScript
yolov8n.onnx # ONNX Runtime or OpenCV DNN with dnn=True
yolov8n_openvino_model # OpenVINO
yolov8n.engine # TensorRT
yolov8n.mlpackage # CoreML (macOS-only)
yolov8n_saved_model # TensorFlow SavedModel
yolov8n.pb # TensorFlow GraphDef
yolov8n.tflite # TensorFlow Lite
yolov8n_edgetpu.tflite # TensorFlow Edge TPU
yolov8n_paddle_model # PaddlePaddle
yolov8n.mnn # MNN
yolov8n_ncnn_model # NCNN
$ yolo mode=predict model=yolo11n.pt # PyTorch
yolo11n.torchscript # TorchScript
yolo11n.onnx # ONNX Runtime or OpenCV DNN with dnn=True
yolo11n_openvino_model # OpenVINO
yolo11n.engine # TensorRT
yolo11n.mlpackage # CoreML (macOS-only)
yolo11n_saved_model # TensorFlow SavedModel
yolo11n.pb # TensorFlow GraphDef
yolo11n.tflite # TensorFlow Lite
yolo11n_edgetpu.tflite # TensorFlow Edge TPU
yolo11n_paddle_model # PaddlePaddle
yolo11n.mnn # MNN
yolo11n_ncnn_model # NCNN
yolo11n_imx_model # Sony IMX
yolo11n_rknn_model # Rockchip RKNN
"""
import platform

View file

@ -1718,7 +1718,7 @@ class OBB(BaseTensor):
Examples:
>>> import torch
>>> from ultralytics import YOLO
>>> model = YOLO("yolov8n-obb.pt")
>>> model = YOLO("yolo11n-obb.pt")
>>> results = model("path/to/image.jpg")
>>> for result in results:
... obb = result.obb

View file

@ -3,7 +3,7 @@
Train a model on a dataset.
Usage:
$ yolo mode=train model=yolov8n.pt data=coco8.yaml imgsz=640 epochs=100 batch=16
$ yolo mode=train model=yolo11n.pt data=coco8.yaml imgsz=640 epochs=100 batch=16
"""
import gc
@ -128,7 +128,7 @@ class BaseTrainer:
self.args.workers = 0 # faster CPU training as time dominated by inference, not dataloading
# Model and Dataset
self.model = check_model_file_from_stem(self.args.model) # add suffix, i.e. yolov8n -> yolov8n.pt
self.model = check_model_file_from_stem(self.args.model) # add suffix, i.e. yolo11n -> yolo11n.pt
with torch_distributed_zero_first(LOCAL_RANK): # avoid auto-downloading dataset multiple times
self.trainset, self.testset = self.get_dataset()
self.ema = None

View file

@ -8,7 +8,7 @@ that yield the best model performance. This is particularly crucial in deep lear
where small changes in hyperparameters can lead to significant differences in model accuracy and efficiency.
Example:
Tune hyperparameters for YOLOv8n on COCO8 at imgsz=640 and epochs=30 for 300 tuning iterations.
Tune hyperparameters for YOLO11n on COCO8 at imgsz=640 and epochs=30 for 300 tuning iterations.
```python
from ultralytics import YOLO
@ -50,7 +50,7 @@ class Tuner:
Executes the hyperparameter evolution across multiple iterations.
Example:
Tune hyperparameters for YOLOv8n on COCO8 at imgsz=640 and epochs=30 for 300 tuning iterations.
Tune hyperparameters for YOLO11n on COCO8 at imgsz=640 and epochs=30 for 300 tuning iterations.
```python
from ultralytics import YOLO

View file

@ -3,22 +3,24 @@
Check a model's accuracy on a test or val split of a dataset.
Usage:
$ yolo mode=val model=yolov8n.pt data=coco8.yaml imgsz=640
$ yolo mode=val model=yolo11n.pt data=coco8.yaml imgsz=640
Usage - formats:
$ yolo mode=val model=yolov8n.pt # PyTorch
yolov8n.torchscript # TorchScript
yolov8n.onnx # ONNX Runtime or OpenCV DNN with dnn=True
yolov8n_openvino_model # OpenVINO
yolov8n.engine # TensorRT
yolov8n.mlpackage # CoreML (macOS-only)
yolov8n_saved_model # TensorFlow SavedModel
yolov8n.pb # TensorFlow GraphDef
yolov8n.tflite # TensorFlow Lite
yolov8n_edgetpu.tflite # TensorFlow Edge TPU
yolov8n_paddle_model # PaddlePaddle
yolov8n.mnn # MNN
yolov8n_ncnn_model # NCNN
$ yolo mode=val model=yolo11n.pt # PyTorch
yolo11n.torchscript # TorchScript
yolo11n.onnx # ONNX Runtime or OpenCV DNN with dnn=True
yolo11n_openvino_model # OpenVINO
yolo11n.engine # TensorRT
yolo11n.mlpackage # CoreML (macOS-only)
yolo11n_saved_model # TensorFlow SavedModel
yolo11n.pb # TensorFlow GraphDef
yolo11n.tflite # TensorFlow Lite
yolo11n_edgetpu.tflite # TensorFlow Edge TPU
yolo11n_paddle_model # PaddlePaddle
yolo11n.mnn # MNN
yolo11n_ncnn_model # NCNN
yolo11n_imx_model # Sony IMX
yolo11n_rknn_model # Rockchip RKNN
"""
import json

View file

@ -21,7 +21,7 @@ class ClassificationPredictor(BasePredictor):
from ultralytics.utils import ASSETS
from ultralytics.models.yolo.classify import ClassificationPredictor
args = dict(model="yolov8n-cls.pt", source=ASSETS)
args = dict(model="yolo11n-cls.pt", source=ASSETS)
predictor = ClassificationPredictor(overrides=args)
predictor.predict_cli()
```

View file

@ -24,7 +24,7 @@ class ClassificationTrainer(BaseTrainer):
```python
from ultralytics.models.yolo.classify import ClassificationTrainer
args = dict(model="yolov8n-cls.pt", data="imagenet10", epochs=3)
args = dict(model="yolo11n-cls.pt", data="imagenet10", epochs=3)
trainer = ClassificationTrainer(overrides=args)
trainer.train()
```

View file

@ -20,7 +20,7 @@ class ClassificationValidator(BaseValidator):
```python
from ultralytics.models.yolo.classify import ClassificationValidator
args = dict(model="yolov8n-cls.pt", data="imagenet10")
args = dict(model="yolo11n-cls.pt", data="imagenet10")
validator = ClassificationValidator(args=args)
validator()
```

View file

@ -16,7 +16,7 @@ class OBBPredictor(DetectionPredictor):
from ultralytics.utils import ASSETS
from ultralytics.models.yolo.obb import OBBPredictor
args = dict(model="yolov8n-obb.pt", source=ASSETS)
args = dict(model="yolo11n-obb.pt", source=ASSETS)
predictor = OBBPredictor(overrides=args)
predictor.predict_cli()
```

View file

@ -15,7 +15,7 @@ class OBBTrainer(yolo.detect.DetectionTrainer):
```python
from ultralytics.models.yolo.obb import OBBTrainer
args = dict(model="yolov8n-obb.pt", data="dota8.yaml", epochs=3)
args = dict(model="yolo11n-obb.pt", data="dota8.yaml", epochs=3)
trainer = OBBTrainer(overrides=args)
trainer.train()
```

View file

@ -18,7 +18,7 @@ class OBBValidator(DetectionValidator):
```python
from ultralytics.models.yolo.obb import OBBValidator
args = dict(model="yolov8n-obb.pt", data="dota8.yaml")
args = dict(model="yolo11n-obb.pt", data="dota8.yaml")
validator = OBBValidator(args=args)
validator(model=args["model"])
```

View file

@ -14,7 +14,7 @@ class PosePredictor(DetectionPredictor):
from ultralytics.utils import ASSETS
from ultralytics.models.yolo.pose import PosePredictor
args = dict(model="yolov8n-pose.pt", source=ASSETS)
args = dict(model="yolo11n-pose.pt", source=ASSETS)
predictor = PosePredictor(overrides=args)
predictor.predict_cli()
```

View file

@ -16,7 +16,7 @@ class PoseTrainer(yolo.detect.DetectionTrainer):
```python
from ultralytics.models.yolo.pose import PoseTrainer
args = dict(model="yolov8n-pose.pt", data="coco8-pose.yaml", epochs=3)
args = dict(model="yolo11n-pose.pt", data="coco8-pose.yaml", epochs=3)
trainer = PoseTrainer(overrides=args)
trainer.train()
```

View file

@ -20,7 +20,7 @@ class PoseValidator(DetectionValidator):
```python
from ultralytics.models.yolo.pose import PoseValidator
args = dict(model="yolov8n-pose.pt", data="coco8-pose.yaml")
args = dict(model="yolo11n-pose.pt", data="coco8-pose.yaml")
validator = PoseValidator(args=args)
validator()
```

View file

@ -14,7 +14,7 @@ class SegmentationPredictor(DetectionPredictor):
from ultralytics.utils import ASSETS
from ultralytics.models.yolo.segment import SegmentationPredictor
args = dict(model="yolov8n-seg.pt", source=ASSETS)
args = dict(model="yolo11n-seg.pt", source=ASSETS)
predictor = SegmentationPredictor(overrides=args)
predictor.predict_cli()
```

View file

@ -16,7 +16,7 @@ class SegmentationTrainer(yolo.detect.DetectionTrainer):
```python
from ultralytics.models.yolo.segment import SegmentationTrainer
args = dict(model="yolov8n-seg.pt", data="coco8-seg.yaml", epochs=3)
args = dict(model="yolo11n-seg.pt", data="coco8-seg.yaml", epochs=3)
trainer = SegmentationTrainer(overrides=args)
trainer.train()
```

View file

@ -22,7 +22,7 @@ class SegmentationValidator(DetectionValidator):
```python
from ultralytics.models.yolo.segment import SegmentationValidator
args = dict(model="yolov8n-seg.pt", data="coco8-seg.yaml")
args = dict(model="yolo11n-seg.pt", data="coco8-seg.yaml")
validator = SegmentationValidator(args=args)
validator()
```

View file

@ -14,7 +14,7 @@ import torch.nn as nn
from PIL import Image
from ultralytics.utils import ARM64, IS_JETSON, IS_RASPBERRYPI, LINUX, LOGGER, PYTHON_VERSION, ROOT, yaml_load
from ultralytics.utils.checks import check_requirements, check_suffix, check_version, check_yaml
from ultralytics.utils.checks import check_requirements, check_suffix, check_version, check_yaml, is_rockchip
from ultralytics.utils.downloads import attempt_download_asset, is_url
@ -60,7 +60,7 @@ class AutoBackend(nn.Module):
Supported Formats and Naming Conventions:
| Format | File Suffix |
|-----------------------|-------------------|
| --------------------- | ----------------- |
| PyTorch | *.pt |
| TorchScript | *.torchscript |
| ONNX Runtime | *.onnx |
@ -75,6 +75,8 @@ class AutoBackend(nn.Module):
| PaddlePaddle | *_paddle_model/ |
| MNN | *.mnn |
| NCNN | *_ncnn_model/ |
| IMX | *_imx_model/ |
| RKNN | *_rknn_model/ |
This class offers dynamic backend switching capabilities based on the input model format, making it easier to deploy
models across various platforms.
@ -124,10 +126,11 @@ class AutoBackend(nn.Module):
mnn,
ncnn,
imx,
rknn,
triton,
) = self._model_type(w)
fp16 &= pt or jit or onnx or xml or engine or nn_module or triton # FP16
nhwc = coreml or saved_model or pb or tflite or edgetpu # BHWC formats (vs torch BCWH)
nhwc = coreml or saved_model or pb or tflite or edgetpu or rknn # BHWC formats (vs torch BCWH)
stride = 32 # default stride
model, metadata, task = None, None, None
@ -466,6 +469,22 @@ class AutoBackend(nn.Module):
model = TritonRemoteModel(w)
metadata = model.metadata
# RKNN
elif rknn:
if not is_rockchip():
raise OSError("RKNN inference is only supported on Rockchip devices.")
LOGGER.info(f"Loading {w} for RKNN inference...")
check_requirements("rknn-toolkit-lite2")
from rknnlite.api import RKNNLite
w = Path(w)
if not w.is_file(): # if not *.rknn
w = next(w.rglob("*.rknn")) # get *.rknn file from *_rknn_model dir
rknn_model = RKNNLite()
rknn_model.load_rknn(w)
ret = rknn_model.init_runtime()
metadata = Path(w).parent / "metadata.yaml"
# Any other format (unsupported)
else:
from ultralytics.engine.exporter import export_formats
@ -652,6 +671,12 @@ class AutoBackend(nn.Module):
im = im.cpu().numpy() # torch to numpy
y = self.model(im)
# RKNN
elif self.rknn:
im = (im.cpu().numpy() * 255).astype("uint8")
im = im if isinstance(im, (list, tuple)) else [im]
y = self.rknn_model.inference(inputs=im)
# TensorFlow (SavedModel, GraphDef, Lite, Edge TPU)
else:
im = im.cpu().numpy()

View file

@ -296,10 +296,10 @@ class BaseModel(nn.Module):
class DetectionModel(BaseModel):
"""YOLOv8 detection model."""
"""YOLO detection model."""
def __init__(self, cfg="yolov8n.yaml", ch=3, nc=None, verbose=True): # model, input channels, number of classes
"""Initialize the YOLOv8 detection model with the given config and parameters."""
def __init__(self, cfg="yolo11n.yaml", ch=3, nc=None, verbose=True): # model, input channels, number of classes
"""Initialize the YOLO detection model with the given config and parameters."""
super().__init__()
self.yaml = cfg if isinstance(cfg, dict) else yaml_model_load(cfg) # cfg dict
if self.yaml["backbone"][0][2] == "Silence":
@ -388,10 +388,10 @@ class DetectionModel(BaseModel):
class OBBModel(DetectionModel):
"""YOLOv8 Oriented Bounding Box (OBB) model."""
"""YOLO Oriented Bounding Box (OBB) model."""
def __init__(self, cfg="yolov8n-obb.yaml", ch=3, nc=None, verbose=True):
"""Initialize YOLOv8 OBB model with given config and parameters."""
def __init__(self, cfg="yolo11n-obb.yaml", ch=3, nc=None, verbose=True):
"""Initialize YOLO OBB model with given config and parameters."""
super().__init__(cfg=cfg, ch=ch, nc=nc, verbose=verbose)
def init_criterion(self):
@ -400,9 +400,9 @@ class OBBModel(DetectionModel):
class SegmentationModel(DetectionModel):
"""YOLOv8 segmentation model."""
"""YOLO segmentation model."""
def __init__(self, cfg="yolov8n-seg.yaml", ch=3, nc=None, verbose=True):
def __init__(self, cfg="yolo11n-seg.yaml", ch=3, nc=None, verbose=True):
"""Initialize YOLOv8 segmentation model with given config and parameters."""
super().__init__(cfg=cfg, ch=ch, nc=nc, verbose=verbose)
@ -412,9 +412,9 @@ class SegmentationModel(DetectionModel):
class PoseModel(DetectionModel):
"""YOLOv8 pose model."""
"""YOLO pose model."""
def __init__(self, cfg="yolov8n-pose.yaml", ch=3, nc=None, data_kpt_shape=(None, None), verbose=True):
def __init__(self, cfg="yolo11n-pose.yaml", ch=3, nc=None, data_kpt_shape=(None, None), verbose=True):
"""Initialize YOLOv8 Pose model."""
if not isinstance(cfg, dict):
cfg = yaml_model_load(cfg) # load model YAML
@ -429,9 +429,9 @@ class PoseModel(DetectionModel):
class ClassificationModel(BaseModel):
"""YOLOv8 classification model."""
"""YOLO classification model."""
def __init__(self, cfg="yolov8n-cls.yaml", ch=3, nc=None, verbose=True):
def __init__(self, cfg="yolo11n-cls.yaml", ch=3, nc=None, verbose=True):
"""Init ClassificationModel with YAML, channels, number of classes, verbose flag."""
super().__init__()
self._from_yaml(cfg, ch, nc, verbose)
@ -842,14 +842,14 @@ def torch_safe_load(weight, safe_only=False):
f"with https://github.com/ultralytics/yolov5.\nThis model is NOT forwards compatible with "
f"YOLOv8 at https://github.com/ultralytics/ultralytics."
f"\nRecommend fixes are to train a new model using the latest 'ultralytics' package or to "
f"run a command with an official Ultralytics model, i.e. 'yolo predict model=yolov8n.pt'"
f"run a command with an official Ultralytics model, i.e. 'yolo predict model=yolo11n.pt'"
)
) from e
LOGGER.warning(
f"WARNING ⚠️ {weight} appears to require '{e.name}', which is not in Ultralytics requirements."
f"\nAutoInstall will run now for '{e.name}' but this feature will be removed in the future."
f"\nRecommend fixes are to train a new model using the latest 'ultralytics' package or to "
f"run a command with an official Ultralytics model, i.e. 'yolo predict model=yolov8n.pt'"
f"run a command with an official Ultralytics model, i.e. 'yolo predict model=yolo11n.pt'"
)
check_requirements(e.name) # install missing module
ckpt = torch.load(file, map_location="cpu")

View file

@ -25,7 +25,7 @@ class AIGym(BaseSolution):
monitor: Processes a frame to detect poses, calculate angles, and count repetitions.
Examples:
>>> gym = AIGym(model="yolov8n-pose.pt")
>>> gym = AIGym(model="yolo11n-pose.pt")
>>> image = cv2.imread("gym_scene.jpg")
>>> processed_image = gym.monitor(image)
>>> cv2.imshow("Processed Image", processed_image)

View file

@ -26,7 +26,7 @@ class Heatmap(ObjectCounter):
Examples:
>>> from ultralytics.solutions import Heatmap
>>> heatmap = Heatmap(model="yolov8n.pt", colormap=cv2.COLORMAP_JET)
>>> heatmap = Heatmap(model="yolo11n.pt", colormap=cv2.COLORMAP_JET)
>>> frame = cv2.imread("frame.jpg")
>>> processed_frame = heatmap.generate_heatmap(frame)
"""

View file

@ -178,7 +178,7 @@ class ParkingManagement(BaseSolution):
Examples:
>>> from ultralytics.solutions import ParkingManagement
>>> parking_manager = ParkingManagement(model="yolov8n.pt", json_file="parking_regions.json")
>>> parking_manager = ParkingManagement(model="yolo11n.pt", json_file="parking_regions.json")
>>> print(f"Occupied spaces: {parking_manager.pr_info['Occupancy']}")
>>> print(f"Available spaces: {parking_manager.pr_info['Available']}")
"""

View file

@ -35,7 +35,7 @@ class BaseSolution:
display_output: Display the results of processing, including showing frames or saving results.
Examples:
>>> solution = BaseSolution(model="yolov8n.pt", region=[(0, 0), (100, 0), (100, 100), (0, 100)])
>>> solution = BaseSolution(model="yolo11n.pt", region=[(0, 0), (100, 0), (100, 100), (0, 100)])
>>> solution.initialize_region()
>>> image = cv2.imread("image.jpg")
>>> solution.extract_tracks(image)

View file

@ -51,6 +51,20 @@ PYTHON_VERSION = platform.python_version()
TORCH_VERSION = torch.__version__
TORCHVISION_VERSION = importlib.metadata.version("torchvision") # faster than importing torchvision
IS_VSCODE = os.environ.get("TERM_PROGRAM", False) == "vscode"
RKNN_CHIPS = frozenset(
{
"rk3588",
"rk3576",
"rk3566",
"rk3568",
"rk3562",
"rv1103",
"rv1106",
"rv1103b",
"rv1106b",
"rk2118",
}
) # Rockchip processors available for export
HELP_MSG = """
Examples for running Ultralytics:

View file

@ -4,25 +4,26 @@ Benchmark a YOLO model formats for speed and accuracy.
Usage:
from ultralytics.utils.benchmarks import ProfileModels, benchmark
ProfileModels(['yolov8n.yaml', 'yolov8s.yaml']).profile()
benchmark(model='yolov8n.pt', imgsz=160)
ProfileModels(['yolo11n.yaml', 'yolov8s.yaml']).profile()
benchmark(model='yolo11n.pt', imgsz=160)
Format | `format=argument` | Model
--- | --- | ---
PyTorch | - | yolov8n.pt
TorchScript | `torchscript` | yolov8n.torchscript
ONNX | `onnx` | yolov8n.onnx
OpenVINO | `openvino` | yolov8n_openvino_model/
TensorRT | `engine` | yolov8n.engine
CoreML | `coreml` | yolov8n.mlpackage
TensorFlow SavedModel | `saved_model` | yolov8n_saved_model/
TensorFlow GraphDef | `pb` | yolov8n.pb
TensorFlow Lite | `tflite` | yolov8n.tflite
TensorFlow Edge TPU | `edgetpu` | yolov8n_edgetpu.tflite
TensorFlow.js | `tfjs` | yolov8n_web_model/
PaddlePaddle | `paddle` | yolov8n_paddle_model/
MNN | `mnn` | yolov8n.mnn
NCNN | `ncnn` | yolov8n_ncnn_model/
PyTorch | - | yolo11n.pt
TorchScript | `torchscript` | yolo11n.torchscript
ONNX | `onnx` | yolo11n.onnx
OpenVINO | `openvino` | yolo11n_openvino_model/
TensorRT | `engine` | yolo11n.engine
CoreML | `coreml` | yolo11n.mlpackage
TensorFlow SavedModel | `saved_model` | yolo11n_saved_model/
TensorFlow GraphDef | `pb` | yolo11n.pb
TensorFlow Lite | `tflite` | yolo11n.tflite
TensorFlow Edge TPU | `edgetpu` | yolo11n_edgetpu.tflite
TensorFlow.js | `tfjs` | yolo11n_web_model/
PaddlePaddle | `paddle` | yolo11n_paddle_model/
MNN | `mnn` | yolo11n.mnn
NCNN | `ncnn` | yolo11n_ncnn_model/
RKNN | `rknn` | yolo11n_rknn_model/
"""
import glob
@ -41,7 +42,7 @@ from ultralytics import YOLO, YOLOWorld
from ultralytics.cfg import TASK2DATA, TASK2METRIC
from ultralytics.engine.exporter import export_formats
from ultralytics.utils import ARM64, ASSETS, IS_JETSON, IS_RASPBERRYPI, LINUX, LOGGER, MACOS, TQDM, WEIGHTS_DIR
from ultralytics.utils.checks import IS_PYTHON_3_12, check_requirements, check_yolo
from ultralytics.utils.checks import IS_PYTHON_3_12, check_requirements, check_yolo, is_rockchip
from ultralytics.utils.downloads import safe_download
from ultralytics.utils.files import file_size
from ultralytics.utils.torch_utils import get_cpu_info, select_device
@ -121,6 +122,11 @@ def benchmark(
assert not isinstance(model, YOLOWorld), "YOLOWorldv2 IMX exports not supported"
assert model.task == "detect", "IMX only supported for detection task"
assert "C2f" in model.__str__(), "IMX only supported for YOLOv8"
if i == 15: # RKNN
assert not isinstance(model, YOLOWorld), "YOLOWorldv2 RKNN exports not supported yet"
assert not is_end2end, "End-to-end models not supported by RKNN yet"
assert LINUX, "RKNN only supported on Linux"
assert not is_rockchip(), "RKNN Inference only supported on Rockchip devices"
if "cpu" in device.type:
assert cpu, "inference not supported on CPU"
if "cuda" in device.type:
@ -334,7 +340,7 @@ class ProfileModels:
Examples:
Profile models and print results
>>> from ultralytics.utils.benchmarks import ProfileModels
>>> profiler = ProfileModels(["yolov8n.yaml", "yolov8s.yaml"], imgsz=640)
>>> profiler = ProfileModels(["yolo11n.yaml", "yolov8s.yaml"], imgsz=640)
>>> profiler.profile()
"""
@ -368,7 +374,7 @@ class ProfileModels:
Examples:
Initialize and profile models
>>> from ultralytics.utils.benchmarks import ProfileModels
>>> profiler = ProfileModels(["yolov8n.yaml", "yolov8s.yaml"], imgsz=640)
>>> profiler = ProfileModels(["yolo11n.yaml", "yolov8s.yaml"], imgsz=640)
>>> profiler.profile()
"""
self.paths = paths

View file

@ -19,6 +19,7 @@ import requests
import torch
from ultralytics.utils import (
ARM64,
ASSETS,
AUTOINSTALL,
IS_COLAB,
@ -30,6 +31,7 @@ from ultralytics.utils import (
MACOS,
ONLINE,
PYTHON_VERSION,
RKNN_CHIPS,
ROOT,
TORCHVISION_VERSION,
USER_CONFIG_DIR,
@ -487,10 +489,10 @@ def check_yolov5u_filename(file: str, verbose: bool = True):
return file
def check_model_file_from_stem(model="yolov8n"):
def check_model_file_from_stem(model="yolo11n"):
"""Return a model filename from a valid model stem."""
if model and not Path(model).suffix and Path(model).stem in downloads.GITHUB_ASSETS_STEMS:
return Path(model).with_suffix(".pt") # add suffix, i.e. yolov8n -> yolov8n.pt
return Path(model).with_suffix(".pt") # add suffix, i.e. yolo11n -> yolo11n.pt
else:
return model
@ -782,6 +784,21 @@ def cuda_is_available() -> bool:
return cuda_device_count() > 0
def is_rockchip():
"""Check if the current environment is running on a Rockchip SoC."""
if LINUX and ARM64:
try:
with open("/proc/device-tree/compatible") as f:
dev_str = f.read()
*_, soc = dev_str.split(",")
if soc.replace("\x00", "") in RKNN_CHIPS:
return True
except OSError:
return False
else:
return False
def is_sudo_available() -> bool:
"""
Check if the sudo command is available in the environment.
@ -798,5 +815,7 @@ def is_sudo_available() -> bool:
# Run checks and define constants
check_python("3.8", hard=False, verbose=True) # check python version
check_torchvision() # check torch-torchvision compatibility
# Define constants
IS_PYTHON_MINIMUM_3_10 = check_python("3.10", hard=False)
IS_PYTHON_3_12 = PYTHON_VERSION.startswith("3.12")

View file

@ -405,7 +405,7 @@ def get_github_assets(repo="ultralytics/assets", version="latest", retry=False):
LOGGER.warning(f"⚠️ GitHub assets check failure for {url}: {r.status_code} {r.reason}")
return "", []
data = r.json()
return data["tag_name"], [x["name"] for x in data["assets"]] # tag, assets i.e. ['yolov8n.pt', 'yolov8s.pt', ...]
return data["tag_name"], [x["name"] for x in data["assets"]] # tag, assets i.e. ['yolo11n.pt', 'yolov8s.pt', ...]
def attempt_download_asset(file, repo="ultralytics/assets", release="v8.3.0", **kwargs):

View file

@ -297,7 +297,7 @@ class v8SegmentationLoss(v8DetectionLoss):
raise TypeError(
"ERROR ❌ segment dataset incorrectly formatted or not a segment dataset.\n"
"This error can occur when incorrectly training a 'segment' model on a 'detect' dataset, "
"i.e. 'yolo train model=yolov8n-seg.pt data=coco8.yaml'.\nVerify your dataset is a "
"i.e. 'yolo train model=yolo11n-seg.pt data=coco8.yaml'.\nVerify your dataset is a "
"correctly formatted 'segment' dataset using 'data=coco8-seg.yaml' "
"as an example.\nSee https://docs.ultralytics.com/datasets/segment/ for help."
) from e
@ -666,7 +666,7 @@ class v8OBBLoss(v8DetectionLoss):
raise TypeError(
"ERROR ❌ OBB dataset incorrectly formatted or not a OBB dataset.\n"
"This error can occur when incorrectly training a 'OBB' model on a 'detect' dataset, "
"i.e. 'yolo train model=yolov8n-obb.pt data=dota8.yaml'.\nVerify your dataset is a "
"i.e. 'yolo train model=yolo11n-obb.pt data=dota8.yaml'.\nVerify your dataset is a "
"correctly formatted 'OBB' dataset using 'data=dota8.yaml' "
"as an example.\nSee https://docs.ultralytics.com/datasets/obb/ for help."
) from e

View file

@ -30,10 +30,10 @@ def run_ray_tune(
```python
from ultralytics import YOLO
# Load a YOLOv8n model
# Load a YOLO11n model
model = YOLO("yolo11n.pt")
# Start tuning hyperparameters for YOLOv8n training on the COCO8 dataset
# Start tuning hyperparameters for YOLO11n training on the COCO8 dataset
result_grid = model.tune(data="coco8.yaml", use_ray=True)
```
"""