ultralytics-ascend/ultralytics/models/yolo/segment/predict.py
Ivor Zhu b5e0cee943
ultralytics 8.3.65 Rockchip RKNN Integration for Ultralytics YOLO models (#16308)
Signed-off-by: Francesco Mattioli <Francesco.mttl@gmail.com>
Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com>
Co-authored-by: Burhan <62214284+Burhan-Q@users.noreply.github.com>
Co-authored-by: Lakshantha Dissanayake <lakshantha@ultralytics.com>
Co-authored-by: Burhan <Burhan-Q@users.noreply.github.com>
Co-authored-by: Laughing-q <1185102784@qq.com>
Co-authored-by: UltralyticsAssistant <web@ultralytics.com>
Co-authored-by: Laughing <61612323+Laughing-q@users.noreply.github.com>
Co-authored-by: Ultralytics Assistant <135830346+UltralyticsAssistant@users.noreply.github.com>
Co-authored-by: Lakshantha Dissanayake <lakshanthad@yahoo.com>
Co-authored-by: Francesco Mattioli <Francesco.mttl@gmail.com>
Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
2025-01-21 02:25:54 +01:00

55 lines
2.4 KiB
Python

# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
from ultralytics.engine.results import Results
from ultralytics.models.yolo.detect.predict import DetectionPredictor
from ultralytics.utils import DEFAULT_CFG, ops
class SegmentationPredictor(DetectionPredictor):
"""
A class extending the DetectionPredictor class for prediction based on a segmentation model.
Example:
```python
from ultralytics.utils import ASSETS
from ultralytics.models.yolo.segment import SegmentationPredictor
args = dict(model="yolo11n-seg.pt", source=ASSETS)
predictor = SegmentationPredictor(overrides=args)
predictor.predict_cli()
```
"""
def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None):
"""Initializes the SegmentationPredictor with the provided configuration, overrides, and callbacks."""
super().__init__(cfg, overrides, _callbacks)
self.args.task = "segment"
def postprocess(self, preds, img, orig_imgs):
"""Applies non-max suppression and processes detections for each image in an input batch."""
p = ops.non_max_suppression(
preds[0],
self.args.conf,
self.args.iou,
agnostic=self.args.agnostic_nms,
max_det=self.args.max_det,
nc=len(self.model.names),
classes=self.args.classes,
)
if not isinstance(orig_imgs, list): # input images are a torch.Tensor, not a list
orig_imgs = ops.convert_torch2numpy_batch(orig_imgs)
results = []
proto = preds[1][-1] if isinstance(preds[1], tuple) else preds[1] # tuple if PyTorch model or array if exported
for i, (pred, orig_img, img_path) in enumerate(zip(p, orig_imgs, self.batch[0])):
if not len(pred): # save empty boxes
masks = None
elif self.args.retina_masks:
pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape)
masks = ops.process_mask_native(proto[i], pred[:, 6:], pred[:, :4], orig_img.shape[:2]) # HWC
else:
masks = ops.process_mask(proto[i], pred[:, 6:], pred[:, :4], img.shape[2:], upsample=True) # HWC
pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape)
results.append(Results(orig_img, path=img_path, names=self.model.names, boxes=pred[:, :6], masks=masks))
return results