Update YOLOv8n to YOLO11n in args (#16873)

Signed-off-by: UltralyticsAssistant <web@ultralytics.com>
Co-authored-by: UltralyticsAssistant <web@ultralytics.com>
This commit is contained in:
Glenn Jocher 2024-10-12 18:09:44 +02:00 committed by GitHub
parent 60dbee2839
commit a9d0cf66cb
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
15 changed files with 53 additions and 53 deletions

View file

@ -263,7 +263,7 @@ def crop_and_pad(frame, box, margin_percent):
def run( def run(
weights: str = "yolov8n.pt", weights: str = "yolo11n.pt",
device: str = "", device: str = "",
source: str = "https://www.youtube.com/watch?v=dQw4w9WgXcQ", source: str = "https://www.youtube.com/watch?v=dQw4w9WgXcQ",
output_path: Optional[str] = None, output_path: Optional[str] = None,
@ -279,7 +279,7 @@ def run(
Run action recognition on a video source using YOLO for object detection and a video classifier. Run action recognition on a video source using YOLO for object detection and a video classifier.
Args: Args:
weights (str): Path to the YOLO model weights. Defaults to "yolov8n.pt". weights (str): Path to the YOLO model weights. Defaults to "yolo11n.pt".
device (str): Device to run the model on. Use 'cuda' for NVIDIA GPU, 'mps' for Apple Silicon, or 'cpu'. Defaults to auto-detection. device (str): Device to run the model on. Use 'cuda' for NVIDIA GPU, 'mps' for Apple Silicon, or 'cpu'. Defaults to auto-detection.
source (str): Path to mp4 video file or YouTube URL. Defaults to a sample YouTube video. source (str): Path to mp4 video file or YouTube URL. Defaults to a sample YouTube video.
output_path (Optional[str], optional): Path to save the output video. Defaults to None. output_path (Optional[str], optional): Path to save the output video. Defaults to None.
@ -421,7 +421,7 @@ def run(
def parse_opt(): def parse_opt():
"""Parse command line arguments.""" """Parse command line arguments."""
parser = argparse.ArgumentParser() parser = argparse.ArgumentParser()
parser.add_argument("--weights", type=str, default="yolov8n.pt", help="ultralytics detector model path") parser.add_argument("--weights", type=str, default="yolo11n.pt", help="ultralytics detector model path")
parser.add_argument("--device", default="", help='cuda device, i.e. 0 or 0,1,2,3 or cpu/mps, "" for auto-detection') parser.add_argument("--device", default="", help='cuda device, i.e. 0 or 0,1,2,3 or cpu/mps, "" for auto-detection')
parser.add_argument( parser.add_argument(
"--source", "--source",

View file

@ -21,7 +21,7 @@ def auto_annotate(data, det_model="yolov8x.pt", sam_model="sam_b.pt", device="",
Examples: Examples:
>>> from ultralytics.data.annotator import auto_annotate >>> from ultralytics.data.annotator import auto_annotate
>>> auto_annotate(data="ultralytics/assets", det_model="yolov8n.pt", sam_model="mobile_sam.pt") >>> auto_annotate(data="ultralytics/assets", det_model="yolo11n.pt", sam_model="mobile_sam.pt")
Notes: Notes:
- The function creates a new directory for output if not specified. - The function creates a new directory for output if not specified.

View file

@ -72,16 +72,16 @@ class Model(nn.Module):
Examples: Examples:
>>> from ultralytics import YOLO >>> from ultralytics import YOLO
>>> model = YOLO("yolov8n.pt") >>> model = YOLO("yolo11n.pt")
>>> results = model.predict("image.jpg") >>> results = model.predict("image.jpg")
>>> model.train(data="coco128.yaml", epochs=3) >>> model.train(data="coco8.yaml", epochs=3)
>>> metrics = model.val() >>> metrics = model.val()
>>> model.export(format="onnx") >>> model.export(format="onnx")
""" """
def __init__( def __init__(
self, self,
model: Union[str, Path] = "yolov8n.pt", model: Union[str, Path] = "yolo11n.pt",
task: str = None, task: str = None,
verbose: bool = False, verbose: bool = False,
) -> None: ) -> None:
@ -106,7 +106,7 @@ class Model(nn.Module):
ImportError: If required dependencies for specific model types (like HUB SDK) are not installed. ImportError: If required dependencies for specific model types (like HUB SDK) are not installed.
Examples: Examples:
>>> model = Model("yolov8n.pt") >>> model = Model("yolo11n.pt")
>>> model = Model("path/to/model.yaml", task="detect") >>> model = Model("path/to/model.yaml", task="detect")
>>> model = Model("hub_model", verbose=True) >>> model = Model("hub_model", verbose=True)
""" """
@ -168,7 +168,7 @@ class Model(nn.Module):
Results object. Results object.
Examples: Examples:
>>> model = YOLO("yolov8n.pt") >>> model = YOLO("yolo11n.pt")
>>> results = model("https://ultralytics.com/images/bus.jpg") >>> results = model("https://ultralytics.com/images/bus.jpg")
>>> for r in results: >>> for r in results:
... print(f"Detected {len(r)} objects in image") ... print(f"Detected {len(r)} objects in image")
@ -192,7 +192,7 @@ class Model(nn.Module):
Examples: Examples:
>>> Model.is_triton_model("http://localhost:8000/v2/models/yolov8n") >>> Model.is_triton_model("http://localhost:8000/v2/models/yolov8n")
True True
>>> Model.is_triton_model("yolov8n.pt") >>> Model.is_triton_model("yolo11n.pt")
False False
""" """
from urllib.parse import urlsplit from urllib.parse import urlsplit
@ -217,7 +217,7 @@ class Model(nn.Module):
Examples: Examples:
>>> Model.is_hub_model("https://hub.ultralytics.com/models/MODEL") >>> Model.is_hub_model("https://hub.ultralytics.com/models/MODEL")
True True
>>> Model.is_hub_model("yolov8n.pt") >>> Model.is_hub_model("yolo11n.pt")
False False
""" """
return model.startswith(f"{HUB_WEB_ROOT}/models/") return model.startswith(f"{HUB_WEB_ROOT}/models/")
@ -274,7 +274,7 @@ class Model(nn.Module):
Examples: Examples:
>>> model = Model() >>> model = Model()
>>> model._load("yolov8n.pt") >>> model._load("yolo11n.pt")
>>> model._load("path/to/weights.pth", task="detect") >>> model._load("path/to/weights.pth", task="detect")
""" """
if weights.lower().startswith(("https://", "http://", "rtsp://", "rtmp://", "tcp://")): if weights.lower().startswith(("https://", "http://", "rtsp://", "rtmp://", "tcp://")):
@ -307,7 +307,7 @@ class Model(nn.Module):
information about supported model formats and operations. information about supported model formats and operations.
Examples: Examples:
>>> model = Model("yolov8n.pt") >>> model = Model("yolo11n.pt")
>>> model._check_is_pytorch_model() # No error raised >>> model._check_is_pytorch_model() # No error raised
>>> model = Model("yolov8n.onnx") >>> model = Model("yolov8n.onnx")
>>> model._check_is_pytorch_model() # Raises TypeError >>> model._check_is_pytorch_model() # Raises TypeError
@ -338,7 +338,7 @@ class Model(nn.Module):
AssertionError: If the model is not a PyTorch model. AssertionError: If the model is not a PyTorch model.
Examples: Examples:
>>> model = Model("yolov8n.pt") >>> model = Model("yolo11n.pt")
>>> model.reset_weights() >>> model.reset_weights()
""" """
self._check_is_pytorch_model() self._check_is_pytorch_model()
@ -349,7 +349,7 @@ class Model(nn.Module):
p.requires_grad = True p.requires_grad = True
return self return self
def load(self, weights: Union[str, Path] = "yolov8n.pt") -> "Model": def load(self, weights: Union[str, Path] = "yolo11n.pt") -> "Model":
""" """
Loads parameters from the specified weights file into the model. Loads parameters from the specified weights file into the model.
@ -367,7 +367,7 @@ class Model(nn.Module):
Examples: Examples:
>>> model = Model() >>> model = Model()
>>> model.load("yolov8n.pt") >>> model.load("yolo11n.pt")
>>> model.load(Path("path/to/weights.pt")) >>> model.load(Path("path/to/weights.pt"))
""" """
self._check_is_pytorch_model() self._check_is_pytorch_model()
@ -391,7 +391,7 @@ class Model(nn.Module):
AssertionError: If the model is not a PyTorch model. AssertionError: If the model is not a PyTorch model.
Examples: Examples:
>>> model = Model("yolov8n.pt") >>> model = Model("yolo11n.pt")
>>> model.save("my_model.pt") >>> model.save("my_model.pt")
""" """
self._check_is_pytorch_model() self._check_is_pytorch_model()
@ -428,7 +428,7 @@ class Model(nn.Module):
TypeError: If the model is not a PyTorch model. TypeError: If the model is not a PyTorch model.
Examples: Examples:
>>> model = Model("yolov8n.pt") >>> model = Model("yolo11n.pt")
>>> model.info() # Prints model summary >>> model.info() # Prints model summary
>>> info_list = model.info(detailed=True, verbose=False) # Returns detailed info as a list >>> info_list = model.info(detailed=True, verbose=False) # Returns detailed info as a list
""" """
@ -451,7 +451,7 @@ class Model(nn.Module):
TypeError: If the model is not a PyTorch nn.Module. TypeError: If the model is not a PyTorch nn.Module.
Examples: Examples:
>>> model = Model("yolov8n.pt") >>> model = Model("yolo11n.pt")
>>> model.fuse() >>> model.fuse()
>>> # Model is now fused and ready for optimized inference >>> # Model is now fused and ready for optimized inference
""" """
@ -483,7 +483,7 @@ class Model(nn.Module):
AssertionError: If the model is not a PyTorch model. AssertionError: If the model is not a PyTorch model.
Examples: Examples:
>>> model = YOLO("yolov8n.pt") >>> model = YOLO("yolo11n.pt")
>>> image = "https://ultralytics.com/images/bus.jpg" >>> image = "https://ultralytics.com/images/bus.jpg"
>>> embeddings = model.embed(image) >>> embeddings = model.embed(image)
>>> print(embeddings[0].shape) >>> print(embeddings[0].shape)
@ -520,7 +520,7 @@ class Model(nn.Module):
Results object. Results object.
Examples: Examples:
>>> model = YOLO("yolov8n.pt") >>> model = YOLO("yolo11n.pt")
>>> results = model.predict(source="path/to/image.jpg", conf=0.25) >>> results = model.predict(source="path/to/image.jpg", conf=0.25)
>>> for r in results: >>> for r in results:
... print(r.boxes.data) # print detection bounding boxes ... print(r.boxes.data) # print detection bounding boxes
@ -581,7 +581,7 @@ class Model(nn.Module):
AttributeError: If the predictor does not have registered trackers. AttributeError: If the predictor does not have registered trackers.
Examples: Examples:
>>> model = YOLO("yolov8n.pt") >>> model = YOLO("yolo11n.pt")
>>> results = model.track(source="path/to/video.mp4", show=True) >>> results = model.track(source="path/to/video.mp4", show=True)
>>> for r in results: >>> for r in results:
... print(r.boxes.id) # print tracking IDs ... print(r.boxes.id) # print tracking IDs
@ -624,8 +624,8 @@ class Model(nn.Module):
AssertionError: If the model is not a PyTorch model. AssertionError: If the model is not a PyTorch model.
Examples: Examples:
>>> model = YOLO("yolov8n.pt") >>> model = YOLO("yolo11n.pt")
>>> results = model.val(data="coco128.yaml", imgsz=640) >>> results = model.val(data="coco8.yaml", imgsz=640)
>>> print(results.box.map) # Print mAP50-95 >>> print(results.box.map) # Print mAP50-95
""" """
custom = {"rect": True} # method defaults custom = {"rect": True} # method defaults
@ -666,7 +666,7 @@ class Model(nn.Module):
AssertionError: If the model is not a PyTorch model. AssertionError: If the model is not a PyTorch model.
Examples: Examples:
>>> model = YOLO("yolov8n.pt") >>> model = YOLO("yolo11n.pt")
>>> results = model.benchmark(data="coco8.yaml", imgsz=640, half=True) >>> results = model.benchmark(data="coco8.yaml", imgsz=640, half=True)
>>> print(results) >>> print(results)
""" """
@ -716,7 +716,7 @@ class Model(nn.Module):
RuntimeError: If the export process fails due to errors. RuntimeError: If the export process fails due to errors.
Examples: Examples:
>>> model = YOLO("yolov8n.pt") >>> model = YOLO("yolo11n.pt")
>>> model.export(format="onnx", dynamic=True, simplify=True) >>> model.export(format="onnx", dynamic=True, simplify=True)
'path/to/exported/model.onnx' 'path/to/exported/model.onnx'
""" """
@ -771,8 +771,8 @@ class Model(nn.Module):
ModuleNotFoundError: If the HUB SDK is not installed. ModuleNotFoundError: If the HUB SDK is not installed.
Examples: Examples:
>>> model = YOLO("yolov8n.pt") >>> model = YOLO("yolo11n.pt")
>>> results = model.train(data="coco128.yaml", epochs=3) >>> results = model.train(data="coco8.yaml", epochs=3)
""" """
self._check_is_pytorch_model() self._check_is_pytorch_model()
if hasattr(self.session, "model") and self.session.model.id: # Ultralytics HUB session with loaded model if hasattr(self.session, "model") and self.session.model.id: # Ultralytics HUB session with loaded model
@ -836,7 +836,7 @@ class Model(nn.Module):
AssertionError: If the model is not a PyTorch model. AssertionError: If the model is not a PyTorch model.
Examples: Examples:
>>> model = YOLO("yolov8n.pt") >>> model = YOLO("yolo11n.pt")
>>> results = model.tune(use_ray=True, iterations=20) >>> results = model.tune(use_ray=True, iterations=20)
>>> print(results) >>> print(results)
""" """
@ -871,7 +871,7 @@ class Model(nn.Module):
AssertionError: If the model is not a PyTorch model. AssertionError: If the model is not a PyTorch model.
Examples: Examples:
>>> model = Model("yolov8n.pt") >>> model = Model("yolo11n.pt")
>>> model = model._apply(lambda t: t.cuda()) # Move model to GPU >>> model = model._apply(lambda t: t.cuda()) # Move model to GPU
""" """
self._check_is_pytorch_model() self._check_is_pytorch_model()
@ -896,7 +896,7 @@ class Model(nn.Module):
AttributeError: If the model or predictor does not have a 'names' attribute. AttributeError: If the model or predictor does not have a 'names' attribute.
Examples: Examples:
>>> model = YOLO("yolov8n.pt") >>> model = YOLO("yolo11n.pt")
>>> print(model.names) >>> print(model.names)
{0: 'person', 1: 'bicycle', 2: 'car', ...} {0: 'person', 1: 'bicycle', 2: 'car', ...}
""" """
@ -924,7 +924,7 @@ class Model(nn.Module):
AttributeError: If the model is not a PyTorch nn.Module instance. AttributeError: If the model is not a PyTorch nn.Module instance.
Examples: Examples:
>>> model = YOLO("yolov8n.pt") >>> model = YOLO("yolo11n.pt")
>>> print(model.device) >>> print(model.device)
device(type='cuda', index=0) # if CUDA is available device(type='cuda', index=0) # if CUDA is available
>>> model = model.to("cpu") >>> model = model.to("cpu")
@ -946,7 +946,7 @@ class Model(nn.Module):
(object | None): The transform object of the model if available, otherwise None. (object | None): The transform object of the model if available, otherwise None.
Examples: Examples:
>>> model = YOLO("yolov8n.pt") >>> model = YOLO("yolo11n.pt")
>>> transforms = model.transforms >>> transforms = model.transforms
>>> if transforms: >>> if transforms:
... print(f"Model transforms: {transforms}") ... print(f"Model transforms: {transforms}")
@ -975,9 +975,9 @@ class Model(nn.Module):
Examples: Examples:
>>> def on_train_start(trainer): >>> def on_train_start(trainer):
... print("Training is starting!") ... print("Training is starting!")
>>> model = YOLO("yolov8n.pt") >>> model = YOLO("yolo11n.pt")
>>> model.add_callback("on_train_start", on_train_start) >>> model.add_callback("on_train_start", on_train_start)
>>> model.train(data="coco128.yaml", epochs=1) >>> model.train(data="coco8.yaml", epochs=1)
""" """
self.callbacks[event].append(func) self.callbacks[event].append(func)
@ -994,7 +994,7 @@ class Model(nn.Module):
recognized by the Ultralytics callback system. recognized by the Ultralytics callback system.
Examples: Examples:
>>> model = YOLO("yolov8n.pt") >>> model = YOLO("yolo11n.pt")
>>> model.add_callback("on_train_start", lambda: print("Training started")) >>> model.add_callback("on_train_start", lambda: print("Training started"))
>>> model.clear_callback("on_train_start") >>> model.clear_callback("on_train_start")
>>> # All callbacks for 'on_train_start' are now removed >>> # All callbacks for 'on_train_start' are now removed
@ -1024,7 +1024,7 @@ class Model(nn.Module):
modifications, ensuring consistent behavior across different runs or experiments. modifications, ensuring consistent behavior across different runs or experiments.
Examples: Examples:
>>> model = YOLO("yolov8n.pt") >>> model = YOLO("yolo11n.pt")
>>> model.add_callback("on_train_start", custom_function) >>> model.add_callback("on_train_start", custom_function)
>>> model.reset_callbacks() >>> model.reset_callbacks()
# All callbacks are now reset to their default functions # All callbacks are now reset to their default functions

View file

@ -676,7 +676,7 @@ class Results(SimpleClass):
Examples: Examples:
>>> from ultralytics import YOLO >>> from ultralytics import YOLO
>>> model = YOLO("yolov8n.pt") >>> model = YOLO("yolo11n.pt")
>>> results = model("path/to/image.jpg") >>> results = model("path/to/image.jpg")
>>> for result in results: >>> for result in results:
... result.save_txt("output.txt") ... result.save_txt("output.txt")

View file

@ -12,7 +12,7 @@ Example:
```python ```python
from ultralytics import YOLO from ultralytics import YOLO
model = YOLO("yolov8n.pt") model = YOLO("yolo11n.pt")
model.tune(data="coco8.yaml", epochs=10, iterations=300, optimizer="AdamW", plots=False, save=False, val=False) model.tune(data="coco8.yaml", epochs=10, iterations=300, optimizer="AdamW", plots=False, save=False, val=False)
``` ```
""" """
@ -54,7 +54,7 @@ class Tuner:
```python ```python
from ultralytics import YOLO from ultralytics import YOLO
model = YOLO("yolov8n.pt") model = YOLO("yolo11n.pt")
model.tune(data="coco8.yaml", epochs=10, iterations=300, optimizer="AdamW", plots=False, save=False, val=False) model.tune(data="coco8.yaml", epochs=10, iterations=300, optimizer="AdamW", plots=False, save=False, val=False)
``` ```
@ -62,7 +62,7 @@ class Tuner:
```python ```python
from ultralytics import YOLO from ultralytics import YOLO
model = YOLO("yolov8n.pt") model = YOLO("yolo11n.pt")
model.tune(space={key1: val1, key2: val2}) # custom search space dictionary model.tune(space={key1: val1, key2: val2}) # custom search space dictionary
``` ```
""" """

View file

@ -14,7 +14,7 @@ class DetectionPredictor(BasePredictor):
from ultralytics.utils import ASSETS from ultralytics.utils import ASSETS
from ultralytics.models.yolo.detect import DetectionPredictor from ultralytics.models.yolo.detect import DetectionPredictor
args = dict(model="yolov8n.pt", source=ASSETS) args = dict(model="yolo11n.pt", source=ASSETS)
predictor = DetectionPredictor(overrides=args) predictor = DetectionPredictor(overrides=args)
predictor.predict_cli() predictor.predict_cli()
``` ```

View file

@ -24,7 +24,7 @@ class DetectionTrainer(BaseTrainer):
```python ```python
from ultralytics.models.yolo.detect import DetectionTrainer from ultralytics.models.yolo.detect import DetectionTrainer
args = dict(model="yolov8n.pt", data="coco8.yaml", epochs=3) args = dict(model="yolo11n.pt", data="coco8.yaml", epochs=3)
trainer = DetectionTrainer(overrides=args) trainer = DetectionTrainer(overrides=args)
trainer.train() trainer.train()
``` ```

View file

@ -22,7 +22,7 @@ class DetectionValidator(BaseValidator):
```python ```python
from ultralytics.models.yolo.detect import DetectionValidator from ultralytics.models.yolo.detect import DetectionValidator
args = dict(model="yolov8n.pt", data="coco8.yaml") args = dict(model="yolo11n.pt", data="coco8.yaml")
validator = DetectionValidator(args=args) validator = DetectionValidator(args=args)
validator() validator()
``` ```

View file

@ -11,7 +11,7 @@ from ultralytics.utils import ROOT, yaml_load
class YOLO(Model): class YOLO(Model):
"""YOLO (You Only Look Once) object detection model.""" """YOLO (You Only Look Once) object detection model."""
def __init__(self, model="yolov8n.pt", task=None, verbose=False): def __init__(self, model="yolo11n.pt", task=None, verbose=False):
"""Initialize YOLO model, switching to YOLOWorld if model filename contains '-world'.""" """Initialize YOLO model, switching to YOLOWorld if model filename contains '-world'."""
path = Path(model) path = Path(model)
if "-world" in path.stem and path.suffix in {".pt", ".yaml", ".yml"}: # if YOLOWorld PyTorch model if "-world" in path.stem and path.suffix in {".pt", ".yaml", ".yml"}: # if YOLOWorld PyTorch model

View file

@ -82,7 +82,7 @@ class AutoBackend(nn.Module):
@torch.no_grad() @torch.no_grad()
def __init__( def __init__(
self, self,
weights="yolov8n.pt", weights="yolo11n.pt",
device=torch.device("cpu"), device=torch.device("cpu"),
dnn=False, dnn=False,
data=None, data=None,

View file

@ -47,7 +47,7 @@ from ultralytics.utils.torch_utils import get_cpu_info, select_device
def benchmark( def benchmark(
model=WEIGHTS_DIR / "yolov8n.pt", model=WEIGHTS_DIR / "yolo11n.pt",
data=None, data=None,
imgsz=160, imgsz=160,
half=False, half=False,
@ -76,7 +76,7 @@ def benchmark(
Examples: Examples:
Benchmark a YOLO model with default settings: Benchmark a YOLO model with default settings:
>>> from ultralytics.utils.benchmarks import benchmark >>> from ultralytics.utils.benchmarks import benchmark
>>> benchmark(model="yolov8n.pt", imgsz=640) >>> benchmark(model="yolo11n.pt", imgsz=640)
""" """
import pandas as pd # scope for faster 'import ultralytics' import pandas as pd # scope for faster 'import ultralytics'

View file

@ -458,7 +458,7 @@ def check_torchvision():
) )
def check_suffix(file="yolov8n.pt", suffix=".pt", msg=""): def check_suffix(file="yolo11n.pt", suffix=".pt", msg=""):
"""Check file(s) for acceptable suffix.""" """Check file(s) for acceptable suffix."""
if file and suffix: if file and suffix:
if isinstance(suffix, str): if isinstance(suffix, str):

View file

@ -425,7 +425,7 @@ def attempt_download_asset(file, repo="ultralytics/assets", release="v8.3.0", **
Example: Example:
```python ```python
file_path = attempt_download_asset("yolov8n.pt", repo="ultralytics/assets", release="latest") file_path = attempt_download_asset("yolo11n.pt", repo="ultralytics/assets", release="latest")
``` ```
""" """
from ultralytics.utils import SETTINGS # scoped for circular import from ultralytics.utils import SETTINGS # scoped for circular import

View file

@ -183,7 +183,7 @@ def get_latest_run(search_dir="."):
return max(last_list, key=os.path.getctime) if last_list else "" return max(last_list, key=os.path.getctime) if last_list else ""
def update_models(model_names=("yolov8n.pt",), source_dir=Path("."), update_names=False): def update_models(model_names=("yolo11n.pt",), source_dir=Path("."), update_names=False):
""" """
Updates and re-saves specified YOLO models in an 'updated_models' subdirectory. Updates and re-saves specified YOLO models in an 'updated_models' subdirectory.
@ -195,7 +195,7 @@ def update_models(model_names=("yolov8n.pt",), source_dir=Path("."), update_name
Examples: Examples:
Update specified YOLO models and save them in 'updated_models' subdirectory: Update specified YOLO models and save them in 'updated_models' subdirectory:
>>> from ultralytics.utils.files import update_models >>> from ultralytics.utils.files import update_models
>>> model_names = ("yolov8n.pt", "yolov8s.pt") >>> model_names = ("yolo11n.pt", "yolov8s.pt")
>>> update_models(model_names, source_dir=Path("/models"), update_names=True) >>> update_models(model_names, source_dir=Path("/models"), update_names=True)
""" """
from ultralytics import YOLO from ultralytics import YOLO

View file

@ -28,7 +28,7 @@ def run_ray_tune(
from ultralytics import YOLO from ultralytics import YOLO
# Load a YOLOv8n model # Load a YOLOv8n model
model = YOLO("yolov8n.pt") model = YOLO("yolo11n.pt")
# Start tuning hyperparameters for YOLOv8n training on the COCO8 dataset # Start tuning hyperparameters for YOLOv8n training on the COCO8 dataset
result_grid = model.tune(data="coco8.yaml", use_ray=True) result_grid = model.tune(data="coco8.yaml", use_ray=True)