diff --git a/examples/YOLOv8-Action-Recognition/action_recognition.py b/examples/YOLOv8-Action-Recognition/action_recognition.py index aad74375..0853981e 100644 --- a/examples/YOLOv8-Action-Recognition/action_recognition.py +++ b/examples/YOLOv8-Action-Recognition/action_recognition.py @@ -263,7 +263,7 @@ def crop_and_pad(frame, box, margin_percent): def run( - weights: str = "yolov8n.pt", + weights: str = "yolo11n.pt", device: str = "", source: str = "https://www.youtube.com/watch?v=dQw4w9WgXcQ", output_path: Optional[str] = None, @@ -279,7 +279,7 @@ def run( Run action recognition on a video source using YOLO for object detection and a video classifier. Args: - weights (str): Path to the YOLO model weights. Defaults to "yolov8n.pt". + weights (str): Path to the YOLO model weights. Defaults to "yolo11n.pt". device (str): Device to run the model on. Use 'cuda' for NVIDIA GPU, 'mps' for Apple Silicon, or 'cpu'. Defaults to auto-detection. source (str): Path to mp4 video file or YouTube URL. Defaults to a sample YouTube video. output_path (Optional[str], optional): Path to save the output video. Defaults to None. @@ -421,7 +421,7 @@ def run( def parse_opt(): """Parse command line arguments.""" parser = argparse.ArgumentParser() - parser.add_argument("--weights", type=str, default="yolov8n.pt", help="ultralytics detector model path") + parser.add_argument("--weights", type=str, default="yolo11n.pt", help="ultralytics detector model path") parser.add_argument("--device", default="", help='cuda device, i.e. 0 or 0,1,2,3 or cpu/mps, "" for auto-detection') parser.add_argument( "--source", diff --git a/ultralytics/data/annotator.py b/ultralytics/data/annotator.py index 5cb0058d..30d02d9d 100644 --- a/ultralytics/data/annotator.py +++ b/ultralytics/data/annotator.py @@ -21,7 +21,7 @@ def auto_annotate(data, det_model="yolov8x.pt", sam_model="sam_b.pt", device="", Examples: >>> from ultralytics.data.annotator import auto_annotate - >>> auto_annotate(data="ultralytics/assets", det_model="yolov8n.pt", sam_model="mobile_sam.pt") + >>> auto_annotate(data="ultralytics/assets", det_model="yolo11n.pt", sam_model="mobile_sam.pt") Notes: - The function creates a new directory for output if not specified. diff --git a/ultralytics/engine/model.py b/ultralytics/engine/model.py index 4f8209c6..c5b63eed 100644 --- a/ultralytics/engine/model.py +++ b/ultralytics/engine/model.py @@ -72,16 +72,16 @@ class Model(nn.Module): Examples: >>> from ultralytics import YOLO - >>> model = YOLO("yolov8n.pt") + >>> model = YOLO("yolo11n.pt") >>> results = model.predict("image.jpg") - >>> model.train(data="coco128.yaml", epochs=3) + >>> model.train(data="coco8.yaml", epochs=3) >>> metrics = model.val() >>> model.export(format="onnx") """ def __init__( self, - model: Union[str, Path] = "yolov8n.pt", + model: Union[str, Path] = "yolo11n.pt", task: str = None, verbose: bool = False, ) -> None: @@ -106,7 +106,7 @@ class Model(nn.Module): ImportError: If required dependencies for specific model types (like HUB SDK) are not installed. Examples: - >>> model = Model("yolov8n.pt") + >>> model = Model("yolo11n.pt") >>> model = Model("path/to/model.yaml", task="detect") >>> model = Model("hub_model", verbose=True) """ @@ -168,7 +168,7 @@ class Model(nn.Module): Results object. Examples: - >>> model = YOLO("yolov8n.pt") + >>> model = YOLO("yolo11n.pt") >>> results = model("https://ultralytics.com/images/bus.jpg") >>> for r in results: ... print(f"Detected {len(r)} objects in image") @@ -192,7 +192,7 @@ class Model(nn.Module): Examples: >>> Model.is_triton_model("http://localhost:8000/v2/models/yolov8n") True - >>> Model.is_triton_model("yolov8n.pt") + >>> Model.is_triton_model("yolo11n.pt") False """ from urllib.parse import urlsplit @@ -217,7 +217,7 @@ class Model(nn.Module): Examples: >>> Model.is_hub_model("https://hub.ultralytics.com/models/MODEL") True - >>> Model.is_hub_model("yolov8n.pt") + >>> Model.is_hub_model("yolo11n.pt") False """ return model.startswith(f"{HUB_WEB_ROOT}/models/") @@ -274,7 +274,7 @@ class Model(nn.Module): Examples: >>> model = Model() - >>> model._load("yolov8n.pt") + >>> model._load("yolo11n.pt") >>> model._load("path/to/weights.pth", task="detect") """ if weights.lower().startswith(("https://", "http://", "rtsp://", "rtmp://", "tcp://")): @@ -307,7 +307,7 @@ class Model(nn.Module): information about supported model formats and operations. Examples: - >>> model = Model("yolov8n.pt") + >>> model = Model("yolo11n.pt") >>> model._check_is_pytorch_model() # No error raised >>> model = Model("yolov8n.onnx") >>> model._check_is_pytorch_model() # Raises TypeError @@ -338,7 +338,7 @@ class Model(nn.Module): AssertionError: If the model is not a PyTorch model. Examples: - >>> model = Model("yolov8n.pt") + >>> model = Model("yolo11n.pt") >>> model.reset_weights() """ self._check_is_pytorch_model() @@ -349,7 +349,7 @@ class Model(nn.Module): p.requires_grad = True return self - def load(self, weights: Union[str, Path] = "yolov8n.pt") -> "Model": + def load(self, weights: Union[str, Path] = "yolo11n.pt") -> "Model": """ Loads parameters from the specified weights file into the model. @@ -367,7 +367,7 @@ class Model(nn.Module): Examples: >>> model = Model() - >>> model.load("yolov8n.pt") + >>> model.load("yolo11n.pt") >>> model.load(Path("path/to/weights.pt")) """ self._check_is_pytorch_model() @@ -391,7 +391,7 @@ class Model(nn.Module): AssertionError: If the model is not a PyTorch model. Examples: - >>> model = Model("yolov8n.pt") + >>> model = Model("yolo11n.pt") >>> model.save("my_model.pt") """ self._check_is_pytorch_model() @@ -428,7 +428,7 @@ class Model(nn.Module): TypeError: If the model is not a PyTorch model. Examples: - >>> model = Model("yolov8n.pt") + >>> model = Model("yolo11n.pt") >>> model.info() # Prints model summary >>> info_list = model.info(detailed=True, verbose=False) # Returns detailed info as a list """ @@ -451,7 +451,7 @@ class Model(nn.Module): TypeError: If the model is not a PyTorch nn.Module. Examples: - >>> model = Model("yolov8n.pt") + >>> model = Model("yolo11n.pt") >>> model.fuse() >>> # Model is now fused and ready for optimized inference """ @@ -483,7 +483,7 @@ class Model(nn.Module): AssertionError: If the model is not a PyTorch model. Examples: - >>> model = YOLO("yolov8n.pt") + >>> model = YOLO("yolo11n.pt") >>> image = "https://ultralytics.com/images/bus.jpg" >>> embeddings = model.embed(image) >>> print(embeddings[0].shape) @@ -520,7 +520,7 @@ class Model(nn.Module): Results object. Examples: - >>> model = YOLO("yolov8n.pt") + >>> model = YOLO("yolo11n.pt") >>> results = model.predict(source="path/to/image.jpg", conf=0.25) >>> for r in results: ... print(r.boxes.data) # print detection bounding boxes @@ -581,7 +581,7 @@ class Model(nn.Module): AttributeError: If the predictor does not have registered trackers. Examples: - >>> model = YOLO("yolov8n.pt") + >>> model = YOLO("yolo11n.pt") >>> results = model.track(source="path/to/video.mp4", show=True) >>> for r in results: ... print(r.boxes.id) # print tracking IDs @@ -624,8 +624,8 @@ class Model(nn.Module): AssertionError: If the model is not a PyTorch model. Examples: - >>> model = YOLO("yolov8n.pt") - >>> results = model.val(data="coco128.yaml", imgsz=640) + >>> model = YOLO("yolo11n.pt") + >>> results = model.val(data="coco8.yaml", imgsz=640) >>> print(results.box.map) # Print mAP50-95 """ custom = {"rect": True} # method defaults @@ -666,7 +666,7 @@ class Model(nn.Module): AssertionError: If the model is not a PyTorch model. Examples: - >>> model = YOLO("yolov8n.pt") + >>> model = YOLO("yolo11n.pt") >>> results = model.benchmark(data="coco8.yaml", imgsz=640, half=True) >>> print(results) """ @@ -716,7 +716,7 @@ class Model(nn.Module): RuntimeError: If the export process fails due to errors. Examples: - >>> model = YOLO("yolov8n.pt") + >>> model = YOLO("yolo11n.pt") >>> model.export(format="onnx", dynamic=True, simplify=True) 'path/to/exported/model.onnx' """ @@ -771,8 +771,8 @@ class Model(nn.Module): ModuleNotFoundError: If the HUB SDK is not installed. Examples: - >>> model = YOLO("yolov8n.pt") - >>> results = model.train(data="coco128.yaml", epochs=3) + >>> model = YOLO("yolo11n.pt") + >>> results = model.train(data="coco8.yaml", epochs=3) """ self._check_is_pytorch_model() if hasattr(self.session, "model") and self.session.model.id: # Ultralytics HUB session with loaded model @@ -836,7 +836,7 @@ class Model(nn.Module): AssertionError: If the model is not a PyTorch model. Examples: - >>> model = YOLO("yolov8n.pt") + >>> model = YOLO("yolo11n.pt") >>> results = model.tune(use_ray=True, iterations=20) >>> print(results) """ @@ -871,7 +871,7 @@ class Model(nn.Module): AssertionError: If the model is not a PyTorch model. Examples: - >>> model = Model("yolov8n.pt") + >>> model = Model("yolo11n.pt") >>> model = model._apply(lambda t: t.cuda()) # Move model to GPU """ self._check_is_pytorch_model() @@ -896,7 +896,7 @@ class Model(nn.Module): AttributeError: If the model or predictor does not have a 'names' attribute. Examples: - >>> model = YOLO("yolov8n.pt") + >>> model = YOLO("yolo11n.pt") >>> print(model.names) {0: 'person', 1: 'bicycle', 2: 'car', ...} """ @@ -924,7 +924,7 @@ class Model(nn.Module): AttributeError: If the model is not a PyTorch nn.Module instance. Examples: - >>> model = YOLO("yolov8n.pt") + >>> model = YOLO("yolo11n.pt") >>> print(model.device) device(type='cuda', index=0) # if CUDA is available >>> model = model.to("cpu") @@ -946,7 +946,7 @@ class Model(nn.Module): (object | None): The transform object of the model if available, otherwise None. Examples: - >>> model = YOLO("yolov8n.pt") + >>> model = YOLO("yolo11n.pt") >>> transforms = model.transforms >>> if transforms: ... print(f"Model transforms: {transforms}") @@ -975,9 +975,9 @@ class Model(nn.Module): Examples: >>> def on_train_start(trainer): ... print("Training is starting!") - >>> model = YOLO("yolov8n.pt") + >>> model = YOLO("yolo11n.pt") >>> model.add_callback("on_train_start", on_train_start) - >>> model.train(data="coco128.yaml", epochs=1) + >>> model.train(data="coco8.yaml", epochs=1) """ self.callbacks[event].append(func) @@ -994,7 +994,7 @@ class Model(nn.Module): recognized by the Ultralytics callback system. Examples: - >>> model = YOLO("yolov8n.pt") + >>> model = YOLO("yolo11n.pt") >>> model.add_callback("on_train_start", lambda: print("Training started")) >>> model.clear_callback("on_train_start") >>> # All callbacks for 'on_train_start' are now removed @@ -1024,7 +1024,7 @@ class Model(nn.Module): modifications, ensuring consistent behavior across different runs or experiments. Examples: - >>> model = YOLO("yolov8n.pt") + >>> model = YOLO("yolo11n.pt") >>> model.add_callback("on_train_start", custom_function) >>> model.reset_callbacks() # All callbacks are now reset to their default functions diff --git a/ultralytics/engine/results.py b/ultralytics/engine/results.py index 57cc4b04..7d8192d6 100644 --- a/ultralytics/engine/results.py +++ b/ultralytics/engine/results.py @@ -676,7 +676,7 @@ class Results(SimpleClass): Examples: >>> from ultralytics import YOLO - >>> model = YOLO("yolov8n.pt") + >>> model = YOLO("yolo11n.pt") >>> results = model("path/to/image.jpg") >>> for result in results: ... result.save_txt("output.txt") diff --git a/ultralytics/engine/tuner.py b/ultralytics/engine/tuner.py index 2f42eb60..0330abb8 100644 --- a/ultralytics/engine/tuner.py +++ b/ultralytics/engine/tuner.py @@ -12,7 +12,7 @@ Example: ```python from ultralytics import YOLO - model = YOLO("yolov8n.pt") + model = YOLO("yolo11n.pt") model.tune(data="coco8.yaml", epochs=10, iterations=300, optimizer="AdamW", plots=False, save=False, val=False) ``` """ @@ -54,7 +54,7 @@ class Tuner: ```python from ultralytics import YOLO - model = YOLO("yolov8n.pt") + model = YOLO("yolo11n.pt") model.tune(data="coco8.yaml", epochs=10, iterations=300, optimizer="AdamW", plots=False, save=False, val=False) ``` @@ -62,7 +62,7 @@ class Tuner: ```python from ultralytics import YOLO - model = YOLO("yolov8n.pt") + model = YOLO("yolo11n.pt") model.tune(space={key1: val1, key2: val2}) # custom search space dictionary ``` """ diff --git a/ultralytics/models/yolo/detect/predict.py b/ultralytics/models/yolo/detect/predict.py index 7a1799f2..136f9882 100644 --- a/ultralytics/models/yolo/detect/predict.py +++ b/ultralytics/models/yolo/detect/predict.py @@ -14,7 +14,7 @@ class DetectionPredictor(BasePredictor): from ultralytics.utils import ASSETS from ultralytics.models.yolo.detect import DetectionPredictor - args = dict(model="yolov8n.pt", source=ASSETS) + args = dict(model="yolo11n.pt", source=ASSETS) predictor = DetectionPredictor(overrides=args) predictor.predict_cli() ``` diff --git a/ultralytics/models/yolo/detect/train.py b/ultralytics/models/yolo/detect/train.py index 5be24c94..e0dbb367 100644 --- a/ultralytics/models/yolo/detect/train.py +++ b/ultralytics/models/yolo/detect/train.py @@ -24,7 +24,7 @@ class DetectionTrainer(BaseTrainer): ```python from ultralytics.models.yolo.detect import DetectionTrainer - args = dict(model="yolov8n.pt", data="coco8.yaml", epochs=3) + args = dict(model="yolo11n.pt", data="coco8.yaml", epochs=3) trainer = DetectionTrainer(overrides=args) trainer.train() ``` diff --git a/ultralytics/models/yolo/detect/val.py b/ultralytics/models/yolo/detect/val.py index aef60d65..05db8cba 100644 --- a/ultralytics/models/yolo/detect/val.py +++ b/ultralytics/models/yolo/detect/val.py @@ -22,7 +22,7 @@ class DetectionValidator(BaseValidator): ```python from ultralytics.models.yolo.detect import DetectionValidator - args = dict(model="yolov8n.pt", data="coco8.yaml") + args = dict(model="yolo11n.pt", data="coco8.yaml") validator = DetectionValidator(args=args) validator() ``` diff --git a/ultralytics/models/yolo/model.py b/ultralytics/models/yolo/model.py index 692537dd..63819603 100644 --- a/ultralytics/models/yolo/model.py +++ b/ultralytics/models/yolo/model.py @@ -11,7 +11,7 @@ from ultralytics.utils import ROOT, yaml_load class YOLO(Model): """YOLO (You Only Look Once) object detection model.""" - def __init__(self, model="yolov8n.pt", task=None, verbose=False): + def __init__(self, model="yolo11n.pt", task=None, verbose=False): """Initialize YOLO model, switching to YOLOWorld if model filename contains '-world'.""" path = Path(model) if "-world" in path.stem and path.suffix in {".pt", ".yaml", ".yml"}: # if YOLOWorld PyTorch model diff --git a/ultralytics/nn/autobackend.py b/ultralytics/nn/autobackend.py index 22d4e6b0..78949cb6 100644 --- a/ultralytics/nn/autobackend.py +++ b/ultralytics/nn/autobackend.py @@ -82,7 +82,7 @@ class AutoBackend(nn.Module): @torch.no_grad() def __init__( self, - weights="yolov8n.pt", + weights="yolo11n.pt", device=torch.device("cpu"), dnn=False, data=None, diff --git a/ultralytics/utils/benchmarks.py b/ultralytics/utils/benchmarks.py index fe6e2a65..653f48d3 100644 --- a/ultralytics/utils/benchmarks.py +++ b/ultralytics/utils/benchmarks.py @@ -47,7 +47,7 @@ from ultralytics.utils.torch_utils import get_cpu_info, select_device def benchmark( - model=WEIGHTS_DIR / "yolov8n.pt", + model=WEIGHTS_DIR / "yolo11n.pt", data=None, imgsz=160, half=False, @@ -76,7 +76,7 @@ def benchmark( Examples: Benchmark a YOLO model with default settings: >>> from ultralytics.utils.benchmarks import benchmark - >>> benchmark(model="yolov8n.pt", imgsz=640) + >>> benchmark(model="yolo11n.pt", imgsz=640) """ import pandas as pd # scope for faster 'import ultralytics' diff --git a/ultralytics/utils/checks.py b/ultralytics/utils/checks.py index 1f530944..76455e23 100644 --- a/ultralytics/utils/checks.py +++ b/ultralytics/utils/checks.py @@ -458,7 +458,7 @@ def check_torchvision(): ) -def check_suffix(file="yolov8n.pt", suffix=".pt", msg=""): +def check_suffix(file="yolo11n.pt", suffix=".pt", msg=""): """Check file(s) for acceptable suffix.""" if file and suffix: if isinstance(suffix, str): diff --git a/ultralytics/utils/downloads.py b/ultralytics/utils/downloads.py index 6751086a..f356f47b 100644 --- a/ultralytics/utils/downloads.py +++ b/ultralytics/utils/downloads.py @@ -425,7 +425,7 @@ def attempt_download_asset(file, repo="ultralytics/assets", release="v8.3.0", ** Example: ```python - file_path = attempt_download_asset("yolov8n.pt", repo="ultralytics/assets", release="latest") + file_path = attempt_download_asset("yolo11n.pt", repo="ultralytics/assets", release="latest") ``` """ from ultralytics.utils import SETTINGS # scoped for circular import diff --git a/ultralytics/utils/files.py b/ultralytics/utils/files.py index 29c68d48..059e9588 100644 --- a/ultralytics/utils/files.py +++ b/ultralytics/utils/files.py @@ -183,7 +183,7 @@ def get_latest_run(search_dir="."): return max(last_list, key=os.path.getctime) if last_list else "" -def update_models(model_names=("yolov8n.pt",), source_dir=Path("."), update_names=False): +def update_models(model_names=("yolo11n.pt",), source_dir=Path("."), update_names=False): """ Updates and re-saves specified YOLO models in an 'updated_models' subdirectory. @@ -195,7 +195,7 @@ def update_models(model_names=("yolov8n.pt",), source_dir=Path("."), update_name Examples: Update specified YOLO models and save them in 'updated_models' subdirectory: >>> from ultralytics.utils.files import update_models - >>> model_names = ("yolov8n.pt", "yolov8s.pt") + >>> model_names = ("yolo11n.pt", "yolov8s.pt") >>> update_models(model_names, source_dir=Path("/models"), update_names=True) """ from ultralytics import YOLO diff --git a/ultralytics/utils/tuner.py b/ultralytics/utils/tuner.py index 1329bfe6..c60022c0 100644 --- a/ultralytics/utils/tuner.py +++ b/ultralytics/utils/tuner.py @@ -28,7 +28,7 @@ def run_ray_tune( from ultralytics import YOLO # Load a YOLOv8n model - model = YOLO("yolov8n.pt") + model = YOLO("yolo11n.pt") # Start tuning hyperparameters for YOLOv8n training on the COCO8 dataset result_grid = model.tune(data="coco8.yaml", use_ray=True)