Update distance-calculation solution (#16907)
Co-authored-by: UltralyticsAssistant <web@ultralytics.com>
This commit is contained in:
parent
1052cf41f8
commit
8e3846d377
6 changed files with 41 additions and 106 deletions
|
|
@ -43,12 +43,9 @@ Measuring the gap between two objects is known as distance calculation within a
|
|||
```python
|
||||
import cv2
|
||||
|
||||
from ultralytics import YOLO, solutions
|
||||
from ultralytics import solutions
|
||||
|
||||
model = YOLO("yolo11n.pt")
|
||||
names = model.model.names
|
||||
|
||||
cap = cv2.VideoCapture("path/to/video/file.mp4")
|
||||
cap = cv2.VideoCapture("Path/to/video/file.mp4")
|
||||
assert cap.isOpened(), "Error reading video file"
|
||||
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))
|
||||
|
||||
|
|
@ -56,16 +53,14 @@ Measuring the gap between two objects is known as distance calculation within a
|
|||
video_writer = cv2.VideoWriter("distance_calculation.avi", cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h))
|
||||
|
||||
# Init distance-calculation obj
|
||||
dist_obj = solutions.DistanceCalculation(names=names, view_img=True)
|
||||
distance = solutions.DistanceCalculation(model="yolo11n.pt", show=True)
|
||||
|
||||
while cap.isOpened():
|
||||
success, im0 = cap.read()
|
||||
if not success:
|
||||
print("Video frame is empty or video processing has been successfully completed.")
|
||||
break
|
||||
|
||||
tracks = model.track(im0, persist=True, show=False)
|
||||
im0 = dist_obj.start_process(im0, tracks)
|
||||
im0 = distance.calculate(im0)
|
||||
video_writer.write(im0)
|
||||
|
||||
cap.release()
|
||||
|
|
@ -85,12 +80,10 @@ Measuring the gap between two objects is known as distance calculation within a
|
|||
### Arguments `DistanceCalculation()`
|
||||
|
||||
| `Name` | `Type` | `Default` | Description |
|
||||
| ---------------- | ------- | --------------- | --------------------------------------------------------- |
|
||||
| `names` | `dict` | `None` | Dictionary of classes names. |
|
||||
| `view_img` | `bool` | `False` | Flag to indicate if the video stream should be displayed. |
|
||||
| `line_thickness` | `int` | `2` | Thickness of the lines drawn on the image. |
|
||||
| `line_color` | `tuple` | `(255, 255, 0)` | Color of the lines drawn on the image (BGR format). |
|
||||
| `centroid_color` | `tuple` | `(255, 0, 255)` | Color of the centroids drawn (BGR format). |
|
||||
| ------------ | ------ | --------- | ---------------------------------------------------- |
|
||||
| `model` | `str` | `None` | Path to Ultralytics YOLO Model File |
|
||||
| `line_width` | `int` | `2` | Line thickness for bounding boxes. |
|
||||
| `show` | `bool` | `False` | Flag to control whether to display the video stream. |
|
||||
|
||||
### Arguments `model.track`
|
||||
|
||||
|
|
@ -122,10 +115,8 @@ To delete points drawn during distance calculation with Ultralytics YOLO11, you
|
|||
|
||||
The key arguments for initializing the `DistanceCalculation` class in Ultralytics YOLO11 include:
|
||||
|
||||
- `names`: Dictionary mapping class indices to class names.
|
||||
- `view_img`: Flag to indicate if the video stream should be displayed.
|
||||
- `line_thickness`: Thickness of the lines drawn on the image.
|
||||
- `line_color`: Color of the lines drawn on the image (BGR format).
|
||||
- `centroid_color`: Color of the centroids (BGR format).
|
||||
- `model`: Model file path.
|
||||
- `show`: Flag to indicate if the video stream should be displayed.
|
||||
- `line_width`: Thickness of bounding box and the lines drawn on the image.
|
||||
|
||||
For an exhaustive list and default values, see the [arguments of DistanceCalculation](#arguments-distancecalculation).
|
||||
|
|
|
|||
|
|
@ -222,6 +222,7 @@ A heatmap generated with [Ultralytics YOLO11](https://github.com/ultralytics/ult
|
|||
|
||||
| Name | Type | Default | Description |
|
||||
| ------------ | ------ | ------------------ | ----------------------------------------------------------------- |
|
||||
| `model` | `str` | `None` | Path to Ultralytics YOLO Model File |
|
||||
| `colormap` | `int` | `cv2.COLORMAP_JET` | Colormap to use for the heatmap. |
|
||||
| `show` | `bool` | `False` | Whether to display the image with the heatmap overlay. |
|
||||
| `show_in` | `bool` | `True` | Whether to display the count of objects entering the region. |
|
||||
|
|
|
|||
|
|
@ -106,6 +106,7 @@ Monitoring workouts through pose estimation with [Ultralytics YOLO11](https://gi
|
|||
| `show` | `bool` | `False` | Flag to display the image. |
|
||||
| `up_angle` | `float` | `145.0` | Angle threshold for the 'up' pose. |
|
||||
| `down_angle` | `float` | `90.0` | Angle threshold for the 'down' pose. |
|
||||
| `model` | `str` | `None` | Path to Ultralytics YOLO Pose Model File |
|
||||
|
||||
### Arguments `model.predict`
|
||||
|
||||
|
|
|
|||
|
|
@ -4,55 +4,21 @@ import math
|
|||
|
||||
import cv2
|
||||
|
||||
from ultralytics.utils.checks import check_imshow
|
||||
from ultralytics.solutions.solutions import BaseSolution # Import a parent class
|
||||
from ultralytics.utils.plotting import Annotator, colors
|
||||
|
||||
|
||||
class DistanceCalculation:
|
||||
class DistanceCalculation(BaseSolution):
|
||||
"""A class to calculate distance between two objects in a real-time video stream based on their tracks."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
names,
|
||||
view_img=False,
|
||||
line_thickness=2,
|
||||
line_color=(255, 0, 255),
|
||||
centroid_color=(104, 31, 17),
|
||||
):
|
||||
"""
|
||||
Initializes the DistanceCalculation class with the given parameters.
|
||||
|
||||
Args:
|
||||
names (dict): Dictionary of classes names.
|
||||
view_img (bool, optional): Flag to indicate if the video stream should be displayed. Defaults to False.
|
||||
line_thickness (int, optional): Thickness of the lines drawn on the image. Defaults to 2.
|
||||
line_color (tuple, optional): Color of the lines drawn on the image (BGR format). Defaults to (255, 255, 0).
|
||||
centroid_color (tuple, optional): Color of the centroids drawn (BGR format). Defaults to (255, 0, 255).
|
||||
"""
|
||||
# Visual & image information
|
||||
self.im0 = None
|
||||
self.annotator = None
|
||||
self.view_img = view_img
|
||||
self.line_color = line_color
|
||||
self.centroid_color = centroid_color
|
||||
|
||||
# Prediction & tracking information
|
||||
self.names = names
|
||||
self.boxes = None
|
||||
self.line_thickness = line_thickness
|
||||
self.trk_ids = None
|
||||
|
||||
# Distance calculation information
|
||||
self.centroids = []
|
||||
def __init__(self, **kwargs):
|
||||
"""Initializes the DistanceCalculation class with the given parameters."""
|
||||
super().__init__(**kwargs)
|
||||
|
||||
# Mouse event information
|
||||
self.left_mouse_count = 0
|
||||
self.selected_boxes = {}
|
||||
|
||||
# Check if environment supports imshow
|
||||
self.env_check = check_imshow(warn=True)
|
||||
self.window_name = "Ultralytics Solutions"
|
||||
|
||||
def mouse_event_for_distance(self, event, x, y, flags, param):
|
||||
"""
|
||||
Handles mouse events to select regions in a real-time video stream.
|
||||
|
|
@ -67,7 +33,7 @@ class DistanceCalculation:
|
|||
if event == cv2.EVENT_LBUTTONDOWN:
|
||||
self.left_mouse_count += 1
|
||||
if self.left_mouse_count <= 2:
|
||||
for box, track_id in zip(self.boxes, self.trk_ids):
|
||||
for box, track_id in zip(self.boxes, self.track_ids):
|
||||
if box[0] < x < box[2] and box[1] < y < box[3] and track_id not in self.selected_boxes:
|
||||
self.selected_boxes[track_id] = box
|
||||
|
||||
|
|
@ -75,30 +41,21 @@ class DistanceCalculation:
|
|||
self.selected_boxes = {}
|
||||
self.left_mouse_count = 0
|
||||
|
||||
def start_process(self, im0, tracks):
|
||||
def calculate(self, im0):
|
||||
"""
|
||||
Processes the video frame and calculates the distance between two bounding boxes.
|
||||
|
||||
Args:
|
||||
im0 (ndarray): The image frame.
|
||||
tracks (list): List of tracks obtained from the object tracking process.
|
||||
|
||||
Returns:
|
||||
(ndarray): The processed image frame.
|
||||
"""
|
||||
self.im0 = im0
|
||||
if tracks[0].boxes.id is None:
|
||||
if self.view_img:
|
||||
self.display_frames()
|
||||
return im0
|
||||
self.annotator = Annotator(im0, line_width=self.line_width) # Initialize annotator
|
||||
self.extract_tracks(im0) # Extract tracks
|
||||
|
||||
self.boxes = tracks[0].boxes.xyxy.cpu()
|
||||
clss = tracks[0].boxes.cls.cpu().tolist()
|
||||
self.trk_ids = tracks[0].boxes.id.int().cpu().tolist()
|
||||
|
||||
self.annotator = Annotator(self.im0, line_width=self.line_thickness)
|
||||
|
||||
for box, cls, track_id in zip(self.boxes, clss, self.trk_ids):
|
||||
# Iterate over bounding boxes, track ids and classes index
|
||||
for box, track_id, cls in zip(self.boxes, self.track_ids, self.clss):
|
||||
self.annotator.box_label(box, color=colors(int(cls), True), label=self.names[int(cls)])
|
||||
|
||||
if len(self.selected_boxes) == 2:
|
||||
|
|
@ -115,25 +72,11 @@ class DistanceCalculation:
|
|||
pixels_distance = math.sqrt(
|
||||
(self.centroids[0][0] - self.centroids[1][0]) ** 2 + (self.centroids[0][1] - self.centroids[1][1]) ** 2
|
||||
)
|
||||
self.annotator.plot_distance_and_line(pixels_distance, self.centroids, self.line_color, self.centroid_color)
|
||||
self.annotator.plot_distance_and_line(pixels_distance, self.centroids)
|
||||
|
||||
self.centroids = []
|
||||
|
||||
if self.view_img and self.env_check:
|
||||
self.display_frames()
|
||||
self.display_output(im0) # display output with base class function
|
||||
cv2.setMouseCallback("Ultralytics Solutions", self.mouse_event_for_distance)
|
||||
|
||||
return im0
|
||||
|
||||
def display_frames(self):
|
||||
"""Displays the current frame with annotations."""
|
||||
cv2.namedWindow(self.window_name)
|
||||
cv2.setMouseCallback(self.window_name, self.mouse_event_for_distance)
|
||||
cv2.imshow(self.window_name, self.im0)
|
||||
|
||||
if cv2.waitKey(1) & 0xFF == ord("q"):
|
||||
return
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
names = {0: "person", 1: "car"} # example class names
|
||||
distance_calculation = DistanceCalculation(names)
|
||||
return im0 # return output image for more usage
|
||||
|
|
|
|||
|
|
@ -112,13 +112,13 @@ class ObjectCounter(BaseSolution):
|
|||
# Iterate over bounding boxes, track ids and classes index
|
||||
for box, track_id, cls in zip(self.boxes, self.track_ids, self.clss):
|
||||
# Draw bounding box and counting region
|
||||
self.annotator.box_label(box, label=self.names[cls], color=colors(track_id, True))
|
||||
self.annotator.box_label(box, label=self.names[cls], color=colors(cls, True))
|
||||
self.store_tracking_history(track_id, box) # Store track history
|
||||
self.store_classwise_counts(cls) # store classwise counts in dict
|
||||
|
||||
# Draw tracks of objects
|
||||
self.annotator.draw_centroid_and_tracks(
|
||||
self.track_line, color=colors(int(track_id), True), track_thickness=self.line_width
|
||||
self.track_line, color=colors(int(cls), True), track_thickness=self.line_width
|
||||
)
|
||||
|
||||
# store previous position of track for object counting
|
||||
|
|
|
|||
|
|
@ -804,31 +804,30 @@ class Annotator:
|
|||
self.im, label, (int(mask[0][0]) - text_size[0] // 2, int(mask[0][1])), 0, self.sf, txt_color, self.tf
|
||||
)
|
||||
|
||||
def plot_distance_and_line(self, pixels_distance, centroids, line_color, centroid_color):
|
||||
def plot_distance_and_line(
|
||||
self, pixels_distance, centroids, line_color=(104, 31, 17), centroid_color=(255, 0, 255)
|
||||
):
|
||||
"""
|
||||
Plot the distance and line on frame.
|
||||
|
||||
Args:
|
||||
pixels_distance (float): Pixels distance between two bbox centroids.
|
||||
centroids (list): Bounding box centroids data.
|
||||
line_color (tuple): RGB distance line color.
|
||||
centroid_color (tuple): RGB bounding box centroid color.
|
||||
line_color (tuple, optional): Distance line color.
|
||||
centroid_color (tuple, optional): Bounding box centroid color.
|
||||
"""
|
||||
# Get the text size
|
||||
(text_width_m, text_height_m), _ = cv2.getTextSize(
|
||||
f"Pixels Distance: {pixels_distance:.2f}", 0, self.sf, self.tf
|
||||
)
|
||||
text = f"Pixels Distance: {pixels_distance:.2f}"
|
||||
(text_width_m, text_height_m), _ = cv2.getTextSize(text, 0, self.sf, self.tf)
|
||||
|
||||
# Define corners with 10-pixel margin and draw rectangle
|
||||
top_left = (15, 25)
|
||||
bottom_right = (15 + text_width_m + 20, 25 + text_height_m + 20)
|
||||
cv2.rectangle(self.im, top_left, bottom_right, centroid_color, -1)
|
||||
cv2.rectangle(self.im, (15, 25), (15 + text_width_m + 20, 25 + text_height_m + 20), line_color, -1)
|
||||
|
||||
# Calculate the position for the text with a 10-pixel margin and draw text
|
||||
text_position = (top_left[0] + 10, top_left[1] + text_height_m + 10)
|
||||
text_position = (25, 25 + text_height_m + 10)
|
||||
cv2.putText(
|
||||
self.im,
|
||||
f"Pixels Distance: {pixels_distance:.2f}",
|
||||
text,
|
||||
text_position,
|
||||
0,
|
||||
self.sf,
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue