ultralytics-ascend/ultralytics/solutions/distance_calculation.py
Muhammad Rizwan Munawar 8e3846d377
Update distance-calculation solution (#16907)
Co-authored-by: UltralyticsAssistant <web@ultralytics.com>
2024-10-14 16:44:36 +02:00

82 lines
3.3 KiB
Python

# Ultralytics YOLO 🚀, AGPL-3.0 license
import math
import cv2
from ultralytics.solutions.solutions import BaseSolution # Import a parent class
from ultralytics.utils.plotting import Annotator, colors
class DistanceCalculation(BaseSolution):
"""A class to calculate distance between two objects in a real-time video stream based on their tracks."""
def __init__(self, **kwargs):
"""Initializes the DistanceCalculation class with the given parameters."""
super().__init__(**kwargs)
# Mouse event information
self.left_mouse_count = 0
self.selected_boxes = {}
def mouse_event_for_distance(self, event, x, y, flags, param):
"""
Handles mouse events to select regions in a real-time video stream.
Args:
event (int): Type of mouse event (e.g., cv2.EVENT_MOUSEMOVE, cv2.EVENT_LBUTTONDOWN, etc.).
x (int): X-coordinate of the mouse pointer.
y (int): Y-coordinate of the mouse pointer.
flags (int): Flags associated with the event (e.g., cv2.EVENT_FLAG_CTRLKEY, cv2.EVENT_FLAG_SHIFTKEY, etc.).
param (dict): Additional parameters passed to the function.
"""
if event == cv2.EVENT_LBUTTONDOWN:
self.left_mouse_count += 1
if self.left_mouse_count <= 2:
for box, track_id in zip(self.boxes, self.track_ids):
if box[0] < x < box[2] and box[1] < y < box[3] and track_id not in self.selected_boxes:
self.selected_boxes[track_id] = box
elif event == cv2.EVENT_RBUTTONDOWN:
self.selected_boxes = {}
self.left_mouse_count = 0
def calculate(self, im0):
"""
Processes the video frame and calculates the distance between two bounding boxes.
Args:
im0 (ndarray): The image frame.
Returns:
(ndarray): The processed image frame.
"""
self.annotator = Annotator(im0, line_width=self.line_width) # Initialize annotator
self.extract_tracks(im0) # Extract tracks
# Iterate over bounding boxes, track ids and classes index
for box, track_id, cls in zip(self.boxes, self.track_ids, self.clss):
self.annotator.box_label(box, color=colors(int(cls), True), label=self.names[int(cls)])
if len(self.selected_boxes) == 2:
for trk_id in self.selected_boxes.keys():
if trk_id == track_id:
self.selected_boxes[track_id] = box
if len(self.selected_boxes) == 2:
# Store user selected boxes in centroids list
self.centroids.extend(
[[int((box[0] + box[2]) // 2), int((box[1] + box[3]) // 2)] for box in self.selected_boxes.values()]
)
# Calculate pixels distance
pixels_distance = math.sqrt(
(self.centroids[0][0] - self.centroids[1][0]) ** 2 + (self.centroids[0][1] - self.centroids[1][1]) ** 2
)
self.annotator.plot_distance_and_line(pixels_distance, self.centroids)
self.centroids = []
self.display_output(im0) # display output with base class function
cv2.setMouseCallback("Ultralytics Solutions", self.mouse_event_for_distance)
return im0 # return output image for more usage