Update distance-calculation solution (#16907)
Co-authored-by: UltralyticsAssistant <web@ultralytics.com>
This commit is contained in:
parent
1052cf41f8
commit
8e3846d377
6 changed files with 41 additions and 106 deletions
|
|
@ -4,55 +4,21 @@ import math
|
|||
|
||||
import cv2
|
||||
|
||||
from ultralytics.utils.checks import check_imshow
|
||||
from ultralytics.solutions.solutions import BaseSolution # Import a parent class
|
||||
from ultralytics.utils.plotting import Annotator, colors
|
||||
|
||||
|
||||
class DistanceCalculation:
|
||||
class DistanceCalculation(BaseSolution):
|
||||
"""A class to calculate distance between two objects in a real-time video stream based on their tracks."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
names,
|
||||
view_img=False,
|
||||
line_thickness=2,
|
||||
line_color=(255, 0, 255),
|
||||
centroid_color=(104, 31, 17),
|
||||
):
|
||||
"""
|
||||
Initializes the DistanceCalculation class with the given parameters.
|
||||
|
||||
Args:
|
||||
names (dict): Dictionary of classes names.
|
||||
view_img (bool, optional): Flag to indicate if the video stream should be displayed. Defaults to False.
|
||||
line_thickness (int, optional): Thickness of the lines drawn on the image. Defaults to 2.
|
||||
line_color (tuple, optional): Color of the lines drawn on the image (BGR format). Defaults to (255, 255, 0).
|
||||
centroid_color (tuple, optional): Color of the centroids drawn (BGR format). Defaults to (255, 0, 255).
|
||||
"""
|
||||
# Visual & image information
|
||||
self.im0 = None
|
||||
self.annotator = None
|
||||
self.view_img = view_img
|
||||
self.line_color = line_color
|
||||
self.centroid_color = centroid_color
|
||||
|
||||
# Prediction & tracking information
|
||||
self.names = names
|
||||
self.boxes = None
|
||||
self.line_thickness = line_thickness
|
||||
self.trk_ids = None
|
||||
|
||||
# Distance calculation information
|
||||
self.centroids = []
|
||||
def __init__(self, **kwargs):
|
||||
"""Initializes the DistanceCalculation class with the given parameters."""
|
||||
super().__init__(**kwargs)
|
||||
|
||||
# Mouse event information
|
||||
self.left_mouse_count = 0
|
||||
self.selected_boxes = {}
|
||||
|
||||
# Check if environment supports imshow
|
||||
self.env_check = check_imshow(warn=True)
|
||||
self.window_name = "Ultralytics Solutions"
|
||||
|
||||
def mouse_event_for_distance(self, event, x, y, flags, param):
|
||||
"""
|
||||
Handles mouse events to select regions in a real-time video stream.
|
||||
|
|
@ -67,7 +33,7 @@ class DistanceCalculation:
|
|||
if event == cv2.EVENT_LBUTTONDOWN:
|
||||
self.left_mouse_count += 1
|
||||
if self.left_mouse_count <= 2:
|
||||
for box, track_id in zip(self.boxes, self.trk_ids):
|
||||
for box, track_id in zip(self.boxes, self.track_ids):
|
||||
if box[0] < x < box[2] and box[1] < y < box[3] and track_id not in self.selected_boxes:
|
||||
self.selected_boxes[track_id] = box
|
||||
|
||||
|
|
@ -75,30 +41,21 @@ class DistanceCalculation:
|
|||
self.selected_boxes = {}
|
||||
self.left_mouse_count = 0
|
||||
|
||||
def start_process(self, im0, tracks):
|
||||
def calculate(self, im0):
|
||||
"""
|
||||
Processes the video frame and calculates the distance between two bounding boxes.
|
||||
|
||||
Args:
|
||||
im0 (ndarray): The image frame.
|
||||
tracks (list): List of tracks obtained from the object tracking process.
|
||||
|
||||
Returns:
|
||||
(ndarray): The processed image frame.
|
||||
"""
|
||||
self.im0 = im0
|
||||
if tracks[0].boxes.id is None:
|
||||
if self.view_img:
|
||||
self.display_frames()
|
||||
return im0
|
||||
self.annotator = Annotator(im0, line_width=self.line_width) # Initialize annotator
|
||||
self.extract_tracks(im0) # Extract tracks
|
||||
|
||||
self.boxes = tracks[0].boxes.xyxy.cpu()
|
||||
clss = tracks[0].boxes.cls.cpu().tolist()
|
||||
self.trk_ids = tracks[0].boxes.id.int().cpu().tolist()
|
||||
|
||||
self.annotator = Annotator(self.im0, line_width=self.line_thickness)
|
||||
|
||||
for box, cls, track_id in zip(self.boxes, clss, self.trk_ids):
|
||||
# Iterate over bounding boxes, track ids and classes index
|
||||
for box, track_id, cls in zip(self.boxes, self.track_ids, self.clss):
|
||||
self.annotator.box_label(box, color=colors(int(cls), True), label=self.names[int(cls)])
|
||||
|
||||
if len(self.selected_boxes) == 2:
|
||||
|
|
@ -115,25 +72,11 @@ class DistanceCalculation:
|
|||
pixels_distance = math.sqrt(
|
||||
(self.centroids[0][0] - self.centroids[1][0]) ** 2 + (self.centroids[0][1] - self.centroids[1][1]) ** 2
|
||||
)
|
||||
self.annotator.plot_distance_and_line(pixels_distance, self.centroids, self.line_color, self.centroid_color)
|
||||
self.annotator.plot_distance_and_line(pixels_distance, self.centroids)
|
||||
|
||||
self.centroids = []
|
||||
|
||||
if self.view_img and self.env_check:
|
||||
self.display_frames()
|
||||
self.display_output(im0) # display output with base class function
|
||||
cv2.setMouseCallback("Ultralytics Solutions", self.mouse_event_for_distance)
|
||||
|
||||
return im0
|
||||
|
||||
def display_frames(self):
|
||||
"""Displays the current frame with annotations."""
|
||||
cv2.namedWindow(self.window_name)
|
||||
cv2.setMouseCallback(self.window_name, self.mouse_event_for_distance)
|
||||
cv2.imshow(self.window_name, self.im0)
|
||||
|
||||
if cv2.waitKey(1) & 0xFF == ord("q"):
|
||||
return
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
names = {0: "person", 1: "car"} # example class names
|
||||
distance_calculation = DistanceCalculation(names)
|
||||
return im0 # return output image for more usage
|
||||
|
|
|
|||
|
|
@ -112,13 +112,13 @@ class ObjectCounter(BaseSolution):
|
|||
# Iterate over bounding boxes, track ids and classes index
|
||||
for box, track_id, cls in zip(self.boxes, self.track_ids, self.clss):
|
||||
# Draw bounding box and counting region
|
||||
self.annotator.box_label(box, label=self.names[cls], color=colors(track_id, True))
|
||||
self.annotator.box_label(box, label=self.names[cls], color=colors(cls, True))
|
||||
self.store_tracking_history(track_id, box) # Store track history
|
||||
self.store_classwise_counts(cls) # store classwise counts in dict
|
||||
|
||||
# Draw tracks of objects
|
||||
self.annotator.draw_centroid_and_tracks(
|
||||
self.track_line, color=colors(int(track_id), True), track_thickness=self.line_width
|
||||
self.track_line, color=colors(int(cls), True), track_thickness=self.line_width
|
||||
)
|
||||
|
||||
# store previous position of track for object counting
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue