Ruff Docstring formatting (#15793)

Signed-off-by: UltralyticsAssistant <web@ultralytics.com>
Co-authored-by: UltralyticsAssistant <web@ultralytics.com>
This commit is contained in:
Glenn Jocher 2024-08-25 04:27:55 +08:00 committed by GitHub
parent d27664216b
commit 776ca86369
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
60 changed files with 241 additions and 309 deletions

View file

@ -1,5 +1,5 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
"""This module defines the base classes and structures for object tracking in YOLO."""
"""Module defines the base classes and structures for object tracking in YOLO."""
from collections import OrderedDict

View file

@ -37,7 +37,6 @@ def linear_assignment(cost_matrix: np.ndarray, thresh: float, use_lap: bool = Tr
>>> thresh = 5.0
>>> matched_indices, unmatched_a, unmatched_b = linear_assignment(cost_matrix, thresh, use_lap=True)
"""
if cost_matrix.size == 0:
return np.empty((0, 2), dtype=int), tuple(range(cost_matrix.shape[0])), tuple(range(cost_matrix.shape[1]))
@ -80,7 +79,6 @@ def iou_distance(atracks: list, btracks: list) -> np.ndarray:
>>> btracks = [np.array([5, 5, 15, 15]), np.array([25, 25, 35, 35])]
>>> cost_matrix = iou_distance(atracks, btracks)
"""
if atracks and isinstance(atracks[0], np.ndarray) or btracks and isinstance(btracks[0], np.ndarray):
atlbrs = atracks
btlbrs = btracks
@ -123,7 +121,6 @@ def embedding_distance(tracks: list, detections: list, metric: str = "cosine") -
>>> detections = [BaseTrack(...), BaseTrack(...)] # List of detection objects with embedding features
>>> cost_matrix = embedding_distance(tracks, detections, metric="cosine")
"""
cost_matrix = np.zeros((len(tracks), len(detections)), dtype=np.float32)
if cost_matrix.size == 0:
return cost_matrix
@ -152,7 +149,6 @@ def fuse_score(cost_matrix: np.ndarray, detections: list) -> np.ndarray:
>>> detections = [BaseTrack(score=np.random.rand()) for _ in range(10)]
>>> fused_matrix = fuse_score(cost_matrix, detections)
"""
if cost_matrix.size == 0:
return cost_matrix
iou_sim = 1 - cost_matrix