Ruff Docstring formatting (#15793)

Signed-off-by: UltralyticsAssistant <web@ultralytics.com>
Co-authored-by: UltralyticsAssistant <web@ultralytics.com>
This commit is contained in:
Glenn Jocher 2024-08-25 04:27:55 +08:00 committed by GitHub
parent d27664216b
commit 776ca86369
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
60 changed files with 241 additions and 309 deletions

View file

@ -1,7 +1,7 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
"""
This module provides functionalities for hyperparameter tuning of the Ultralytics YOLO models for object detection,
instance segmentation, image classification, pose estimation, and multi-object tracking.
Module provides functionalities for hyperparameter tuning of the Ultralytics YOLO models for object detection, instance
segmentation, image classification, pose estimation, and multi-object tracking.
Hyperparameter tuning is the process of systematically searching for the optimal set of hyperparameters
that yield the best model performance. This is particularly crucial in deep learning models like YOLO,
@ -176,7 +176,6 @@ class Tuner:
The method utilizes the `self.tune_csv` Path object to read and log hyperparameters and fitness scores.
Ensure this path is set correctly in the Tuner instance.
"""
t0 = time.time()
best_save_dir, best_metrics = None, None
(self.tune_dir / "weights").mkdir(parents=True, exist_ok=True)