Ruff Docstring formatting (#15793)
Signed-off-by: UltralyticsAssistant <web@ultralytics.com> Co-authored-by: UltralyticsAssistant <web@ultralytics.com>
This commit is contained in:
parent
d27664216b
commit
776ca86369
60 changed files with 241 additions and 309 deletions
|
|
@ -1,7 +1,7 @@
|
|||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
"""
|
||||
This module provides functionalities for hyperparameter tuning of the Ultralytics YOLO models for object detection,
|
||||
instance segmentation, image classification, pose estimation, and multi-object tracking.
|
||||
Module provides functionalities for hyperparameter tuning of the Ultralytics YOLO models for object detection, instance
|
||||
segmentation, image classification, pose estimation, and multi-object tracking.
|
||||
|
||||
Hyperparameter tuning is the process of systematically searching for the optimal set of hyperparameters
|
||||
that yield the best model performance. This is particularly crucial in deep learning models like YOLO,
|
||||
|
|
@ -176,7 +176,6 @@ class Tuner:
|
|||
The method utilizes the `self.tune_csv` Path object to read and log hyperparameters and fitness scores.
|
||||
Ensure this path is set correctly in the Tuner instance.
|
||||
"""
|
||||
|
||||
t0 = time.time()
|
||||
best_save_dir, best_metrics = None, None
|
||||
(self.tune_dir / "weights").mkdir(parents=True, exist_ok=True)
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue