Ruff Docstring formatting (#15793)
Signed-off-by: UltralyticsAssistant <web@ultralytics.com> Co-authored-by: UltralyticsAssistant <web@ultralytics.com>
This commit is contained in:
parent
d27664216b
commit
776ca86369
60 changed files with 241 additions and 309 deletions
|
|
@ -1,6 +1,6 @@
|
|||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
"""
|
||||
Export a YOLOv8 PyTorch model to other formats. TensorFlow exports authored by https://github.com/zldrobit
|
||||
Export a YOLOv8 PyTorch model to other formats. TensorFlow exports authored by https://github.com/zldrobit.
|
||||
|
||||
Format | `format=argument` | Model
|
||||
--- | --- | ---
|
||||
|
|
@ -533,9 +533,7 @@ class Exporter:
|
|||
|
||||
@try_export
|
||||
def export_ncnn(self, prefix=colorstr("NCNN:")):
|
||||
"""
|
||||
YOLOv8 NCNN export using PNNX https://github.com/pnnx/pnnx.
|
||||
"""
|
||||
"""YOLOv8 NCNN export using PNNX https://github.com/pnnx/pnnx."""
|
||||
check_requirements("ncnn")
|
||||
import ncnn # noqa
|
||||
|
||||
|
|
|
|||
|
|
@ -384,7 +384,7 @@ class BasePredictor:
|
|||
cv2.imwrite(save_path, im)
|
||||
|
||||
def show(self, p=""):
|
||||
"""Display an image in a window using OpenCV imshow()."""
|
||||
"""Display an image in a window using the OpenCV imshow function."""
|
||||
im = self.plotted_img
|
||||
if platform.system() == "Linux" and p not in self.windows:
|
||||
self.windows.append(p)
|
||||
|
|
|
|||
|
|
@ -228,7 +228,6 @@ class BaseTrainer:
|
|||
|
||||
def _setup_train(self, world_size):
|
||||
"""Builds dataloaders and optimizer on correct rank process."""
|
||||
|
||||
# Model
|
||||
self.run_callbacks("on_pretrain_routine_start")
|
||||
ckpt = self.setup_model()
|
||||
|
|
@ -638,7 +637,7 @@ class BaseTrainer:
|
|||
pass
|
||||
|
||||
def on_plot(self, name, data=None):
|
||||
"""Registers plots (e.g. to be consumed in callbacks)"""
|
||||
"""Registers plots (e.g. to be consumed in callbacks)."""
|
||||
path = Path(name)
|
||||
self.plots[path] = {"data": data, "timestamp": time.time()}
|
||||
|
||||
|
|
@ -737,7 +736,6 @@ class BaseTrainer:
|
|||
Returns:
|
||||
(torch.optim.Optimizer): The constructed optimizer.
|
||||
"""
|
||||
|
||||
g = [], [], [] # optimizer parameter groups
|
||||
bn = tuple(v for k, v in nn.__dict__.items() if "Norm" in k) # normalization layers, i.e. BatchNorm2d()
|
||||
if name == "auto":
|
||||
|
|
|
|||
|
|
@ -1,7 +1,7 @@
|
|||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
"""
|
||||
This module provides functionalities for hyperparameter tuning of the Ultralytics YOLO models for object detection,
|
||||
instance segmentation, image classification, pose estimation, and multi-object tracking.
|
||||
Module provides functionalities for hyperparameter tuning of the Ultralytics YOLO models for object detection, instance
|
||||
segmentation, image classification, pose estimation, and multi-object tracking.
|
||||
|
||||
Hyperparameter tuning is the process of systematically searching for the optimal set of hyperparameters
|
||||
that yield the best model performance. This is particularly crucial in deep learning models like YOLO,
|
||||
|
|
@ -176,7 +176,6 @@ class Tuner:
|
|||
The method utilizes the `self.tune_csv` Path object to read and log hyperparameters and fitness scores.
|
||||
Ensure this path is set correctly in the Tuner instance.
|
||||
"""
|
||||
|
||||
t0 = time.time()
|
||||
best_save_dir, best_metrics = None, None
|
||||
(self.tune_dir / "weights").mkdir(parents=True, exist_ok=True)
|
||||
|
|
|
|||
|
|
@ -104,9 +104,7 @@ class BaseValidator:
|
|||
|
||||
@smart_inference_mode()
|
||||
def __call__(self, trainer=None, model=None):
|
||||
"""Supports validation of a pre-trained model if passed or a model being trained if trainer is passed (trainer
|
||||
gets priority).
|
||||
"""
|
||||
"""Executes validation process, running inference on dataloader and computing performance metrics."""
|
||||
self.training = trainer is not None
|
||||
augment = self.args.augment and (not self.training)
|
||||
if self.training:
|
||||
|
|
@ -280,7 +278,7 @@ class BaseValidator:
|
|||
return batch
|
||||
|
||||
def postprocess(self, preds):
|
||||
"""Describes and summarizes the purpose of 'postprocess()' but no details mentioned."""
|
||||
"""Preprocesses the predictions."""
|
||||
return preds
|
||||
|
||||
def init_metrics(self, model):
|
||||
|
|
@ -317,7 +315,7 @@ class BaseValidator:
|
|||
return []
|
||||
|
||||
def on_plot(self, name, data=None):
|
||||
"""Registers plots (e.g. to be consumed in callbacks)"""
|
||||
"""Registers plots (e.g. to be consumed in callbacks)."""
|
||||
self.plots[Path(name)] = {"data": data, "timestamp": time.time()}
|
||||
|
||||
# TODO: may need to put these following functions into callback
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue