Ruff Docstring formatting (#15793)
Signed-off-by: UltralyticsAssistant <web@ultralytics.com> Co-authored-by: UltralyticsAssistant <web@ultralytics.com>
This commit is contained in:
parent
d27664216b
commit
776ca86369
60 changed files with 241 additions and 309 deletions
|
|
@ -30,7 +30,6 @@ class LetterBox:
|
|||
|
||||
def __call__(self, labels=None, image=None):
|
||||
"""Return updated labels and image with added border."""
|
||||
|
||||
if labels is None:
|
||||
labels = {}
|
||||
img = labels.get("img") if image is None else image
|
||||
|
|
@ -79,7 +78,6 @@ class LetterBox:
|
|||
|
||||
def _update_labels(self, labels, ratio, padw, padh):
|
||||
"""Update labels."""
|
||||
|
||||
labels["instances"].convert_bbox(format="xyxy")
|
||||
labels["instances"].denormalize(*labels["img"].shape[:2][::-1])
|
||||
labels["instances"].scale(*ratio)
|
||||
|
|
@ -100,7 +98,6 @@ class Yolov8TFLite:
|
|||
confidence_thres: Confidence threshold for filtering detections.
|
||||
iou_thres: IoU (Intersection over Union) threshold for non-maximum suppression.
|
||||
"""
|
||||
|
||||
self.tflite_model = tflite_model
|
||||
self.input_image = input_image
|
||||
self.confidence_thres = confidence_thres
|
||||
|
|
@ -125,7 +122,6 @@ class Yolov8TFLite:
|
|||
Returns:
|
||||
None
|
||||
"""
|
||||
|
||||
# Extract the coordinates of the bounding box
|
||||
x1, y1, w, h = box
|
||||
|
||||
|
|
@ -164,7 +160,6 @@ class Yolov8TFLite:
|
|||
Returns:
|
||||
image_data: Preprocessed image data ready for inference.
|
||||
"""
|
||||
|
||||
# Read the input image using OpenCV
|
||||
self.img = cv2.imread(self.input_image)
|
||||
|
||||
|
|
@ -193,7 +188,6 @@ class Yolov8TFLite:
|
|||
Returns:
|
||||
numpy.ndarray: The input image with detections drawn on it.
|
||||
"""
|
||||
|
||||
boxes = []
|
||||
scores = []
|
||||
class_ids = []
|
||||
|
|
@ -238,7 +232,6 @@ class Yolov8TFLite:
|
|||
Returns:
|
||||
output_img: The output image with drawn detections.
|
||||
"""
|
||||
|
||||
# Create an interpreter for the TFLite model
|
||||
interpreter = tflite.Interpreter(model_path=self.tflite_model)
|
||||
self.model = interpreter
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue