ultralytics 8.1.26 LoadImagesAndVideos batched inference (#8817)
Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com>
This commit is contained in:
parent
1f9667fff2
commit
7451ca1f54
11 changed files with 186 additions and 171 deletions
|
|
@ -73,9 +73,7 @@ class BasePredictor:
|
|||
data (dict): Data configuration.
|
||||
device (torch.device): Device used for prediction.
|
||||
dataset (Dataset): Dataset used for prediction.
|
||||
vid_path (str): Path to video file.
|
||||
vid_writer (cv2.VideoWriter): Video writer for saving video output.
|
||||
data_path (str): Path to data.
|
||||
vid_writer (dict): Dictionary of {save_path: video_writer, ...} writer for saving video output.
|
||||
"""
|
||||
|
||||
def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None):
|
||||
|
|
@ -100,10 +98,11 @@ class BasePredictor:
|
|||
self.imgsz = None
|
||||
self.device = None
|
||||
self.dataset = None
|
||||
self.vid_path, self.vid_writer, self.vid_frame = None, None, None
|
||||
self.vid_writer = {} # dict of {save_path: video_writer, ...}
|
||||
self.plotted_img = None
|
||||
self.data_path = None
|
||||
self.source_type = None
|
||||
self.seen = 0
|
||||
self.windows = []
|
||||
self.batch = None
|
||||
self.results = None
|
||||
self.transforms = None
|
||||
|
|
@ -155,44 +154,6 @@ class BasePredictor:
|
|||
letterbox = LetterBox(self.imgsz, auto=same_shapes and self.model.pt, stride=self.model.stride)
|
||||
return [letterbox(image=x) for x in im]
|
||||
|
||||
def write_results(self, idx, results, batch):
|
||||
"""Write inference results to a file or directory."""
|
||||
p, im, _ = batch
|
||||
log_string = ""
|
||||
if len(im.shape) == 3:
|
||||
im = im[None] # expand for batch dim
|
||||
if self.source_type.webcam or self.source_type.from_img or self.source_type.tensor: # batch_size >= 1
|
||||
log_string += f"{idx}: "
|
||||
frame = self.dataset.count
|
||||
else:
|
||||
frame = getattr(self.dataset, "frame", 0)
|
||||
self.data_path = p
|
||||
self.txt_path = str(self.save_dir / "labels" / p.stem) + ("" if self.dataset.mode == "image" else f"_{frame}")
|
||||
log_string += "%gx%g " % im.shape[2:] # print string
|
||||
result = results[idx]
|
||||
log_string += result.verbose()
|
||||
|
||||
if self.args.save or self.args.show: # Add bbox to image
|
||||
plot_args = {
|
||||
"line_width": self.args.line_width,
|
||||
"boxes": self.args.show_boxes,
|
||||
"conf": self.args.show_conf,
|
||||
"labels": self.args.show_labels,
|
||||
}
|
||||
if not self.args.retina_masks:
|
||||
plot_args["im_gpu"] = im[idx]
|
||||
self.plotted_img = result.plot(**plot_args)
|
||||
# Write
|
||||
if self.args.save_txt:
|
||||
result.save_txt(f"{self.txt_path}.txt", save_conf=self.args.save_conf)
|
||||
if self.args.save_crop:
|
||||
result.save_crop(
|
||||
save_dir=self.save_dir / "crops",
|
||||
file_name=self.data_path.stem + ("" if self.dataset.mode == "image" else f"_{frame}"),
|
||||
)
|
||||
|
||||
return log_string
|
||||
|
||||
def postprocess(self, preds, img, orig_imgs):
|
||||
"""Post-processes predictions for an image and returns them."""
|
||||
return preds
|
||||
|
|
@ -228,18 +189,20 @@ class BasePredictor:
|
|||
else None
|
||||
)
|
||||
self.dataset = load_inference_source(
|
||||
source=source, vid_stride=self.args.vid_stride, buffer=self.args.stream_buffer
|
||||
source=source,
|
||||
batch=self.args.batch,
|
||||
vid_stride=self.args.vid_stride,
|
||||
buffer=self.args.stream_buffer,
|
||||
)
|
||||
self.source_type = self.dataset.source_type
|
||||
if not getattr(self, "stream", True) and (
|
||||
self.dataset.mode == "stream" # streams
|
||||
or len(self.dataset) > 1000 # images
|
||||
self.source_type.stream
|
||||
or self.source_type.screenshot
|
||||
or len(self.dataset) > 1000 # many images
|
||||
or any(getattr(self.dataset, "video_flag", [False]))
|
||||
): # videos
|
||||
LOGGER.warning(STREAM_WARNING)
|
||||
self.vid_path = [None] * self.dataset.bs
|
||||
self.vid_writer = [None] * self.dataset.bs
|
||||
self.vid_frame = [None] * self.dataset.bs
|
||||
self.vid_writer = {}
|
||||
|
||||
@smart_inference_mode()
|
||||
def stream_inference(self, source=None, model=None, *args, **kwargs):
|
||||
|
|
@ -271,10 +234,9 @@ class BasePredictor:
|
|||
ops.Profile(device=self.device),
|
||||
)
|
||||
self.run_callbacks("on_predict_start")
|
||||
for batch in self.dataset:
|
||||
for self.batch in self.dataset:
|
||||
self.run_callbacks("on_predict_batch_start")
|
||||
self.batch = batch
|
||||
path, im0s, vid_cap, s = batch
|
||||
paths, im0s, is_video, s = self.batch
|
||||
|
||||
# Preprocess
|
||||
with profilers[0]:
|
||||
|
|
@ -290,8 +252,8 @@ class BasePredictor:
|
|||
# Postprocess
|
||||
with profilers[2]:
|
||||
self.results = self.postprocess(preds, im, im0s)
|
||||
|
||||
self.run_callbacks("on_predict_postprocess_end")
|
||||
|
||||
# Visualize, save, write results
|
||||
n = len(im0s)
|
||||
for i in range(n):
|
||||
|
|
@ -301,41 +263,32 @@ class BasePredictor:
|
|||
"inference": profilers[1].dt * 1e3 / n,
|
||||
"postprocess": profilers[2].dt * 1e3 / n,
|
||||
}
|
||||
p, im0 = path[i], None if self.source_type.tensor else im0s[i].copy()
|
||||
p = Path(p)
|
||||
|
||||
if self.args.verbose or self.args.save or self.args.save_txt or self.args.show:
|
||||
s += self.write_results(i, self.results, (p, im, im0))
|
||||
if self.args.save or self.args.save_txt:
|
||||
self.results[i].save_dir = self.save_dir.__str__()
|
||||
if self.args.show and self.plotted_img is not None:
|
||||
self.show(p)
|
||||
if self.args.save and self.plotted_img is not None:
|
||||
self.save_preds(vid_cap, i, str(self.save_dir / p.name))
|
||||
s[i] += self.write_results(i, Path(paths[i]), im, is_video)
|
||||
|
||||
# Print batch results
|
||||
if self.args.verbose:
|
||||
LOGGER.info("\n".join(s))
|
||||
|
||||
self.run_callbacks("on_predict_batch_end")
|
||||
yield from self.results
|
||||
|
||||
# Print time (inference-only)
|
||||
if self.args.verbose:
|
||||
LOGGER.info(f"{s}{profilers[1].dt * 1E3:.1f}ms")
|
||||
|
||||
# Release assets
|
||||
if isinstance(self.vid_writer[-1], cv2.VideoWriter):
|
||||
self.vid_writer[-1].release() # release final video writer
|
||||
for v in self.vid_writer.values():
|
||||
if isinstance(v, cv2.VideoWriter):
|
||||
v.release()
|
||||
|
||||
# Print results
|
||||
# Print final results
|
||||
if self.args.verbose and self.seen:
|
||||
t = tuple(x.t / self.seen * 1e3 for x in profilers) # speeds per image
|
||||
LOGGER.info(
|
||||
f"Speed: %.1fms preprocess, %.1fms inference, %.1fms postprocess per image at shape "
|
||||
f"{(1, 3, *im.shape[2:])}" % t
|
||||
f"{(min(self.args.batch, self.seen), 3, *im.shape[2:])}" % t
|
||||
)
|
||||
if self.args.save or self.args.save_txt or self.args.save_crop:
|
||||
nl = len(list(self.save_dir.glob("labels/*.txt"))) # number of labels
|
||||
s = f"\n{nl} label{'s' * (nl > 1)} saved to {self.save_dir / 'labels'}" if self.args.save_txt else ""
|
||||
LOGGER.info(f"Results saved to {colorstr('bold', self.save_dir)}{s}")
|
||||
|
||||
self.run_callbacks("on_predict_end")
|
||||
|
||||
def setup_model(self, model, verbose=True):
|
||||
|
|
@ -354,48 +307,81 @@ class BasePredictor:
|
|||
self.args.half = self.model.fp16 # update half
|
||||
self.model.eval()
|
||||
|
||||
def show(self, p):
|
||||
"""Display an image in a window using OpenCV imshow()."""
|
||||
im0 = self.plotted_img
|
||||
if platform.system() == "Linux" and p not in self.windows:
|
||||
self.windows.append(p)
|
||||
cv2.namedWindow(str(p), cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO) # allow window resize (Linux)
|
||||
cv2.resizeWindow(str(p), im0.shape[1], im0.shape[0])
|
||||
cv2.imshow(str(p), im0)
|
||||
cv2.waitKey(500 if self.batch[3].startswith("image") else 1) # 1 millisecond
|
||||
def write_results(self, i, p, im, is_video):
|
||||
"""Write inference results to a file or directory."""
|
||||
string = "" # print string
|
||||
if len(im.shape) == 3:
|
||||
im = im[None] # expand for batch dim
|
||||
if self.source_type.stream or self.source_type.from_img or self.source_type.tensor: # batch_size >= 1
|
||||
string += f"{i}: "
|
||||
frame = self.dataset.count
|
||||
else:
|
||||
frame = getattr(self.dataset, "frame", 0) - len(self.results) + i
|
||||
|
||||
def save_preds(self, vid_cap, idx, save_path):
|
||||
self.txt_path = self.save_dir / "labels" / (p.stem + f"_{frame}" if is_video[i] else "")
|
||||
string += "%gx%g " % im.shape[2:]
|
||||
result = self.results[i]
|
||||
result.save_dir = self.save_dir.__str__() # used in other locations
|
||||
string += result.verbose() + f"{result.speed['inference']:.1f}ms"
|
||||
|
||||
# Add predictions to image
|
||||
if self.args.save or self.args.show:
|
||||
self.plotted_img = result.plot(
|
||||
line_width=self.args.line_width,
|
||||
boxes=self.args.show_boxes,
|
||||
conf=self.args.show_conf,
|
||||
labels=self.args.show_labels,
|
||||
im_gpu=None if self.args.retina_masks else im[i],
|
||||
)
|
||||
|
||||
# Save results
|
||||
if self.args.save_txt:
|
||||
result.save_txt(f"{self.txt_path}.txt", save_conf=self.args.save_conf)
|
||||
if self.args.save_crop:
|
||||
result.save_crop(save_dir=self.save_dir / "crops", file_name=self.txt_path.stem)
|
||||
if self.args.show:
|
||||
self.show(str(p), is_video[i])
|
||||
if self.args.save:
|
||||
self.save_predicted_images(str(self.save_dir / p.name), is_video[i], frame)
|
||||
|
||||
return string
|
||||
|
||||
def save_predicted_images(self, save_path="", is_video=False, frame=0):
|
||||
"""Save video predictions as mp4 at specified path."""
|
||||
im0 = self.plotted_img
|
||||
# Save imgs
|
||||
if self.dataset.mode == "image":
|
||||
cv2.imwrite(save_path, im0)
|
||||
else: # 'video' or 'stream'
|
||||
im = self.plotted_img
|
||||
|
||||
# Save videos and streams
|
||||
if is_video:
|
||||
frames_path = f'{save_path.split(".", 1)[0]}_frames/'
|
||||
if self.vid_path[idx] != save_path: # new video
|
||||
self.vid_path[idx] = save_path
|
||||
if save_path not in self.vid_writer: # new video
|
||||
if self.args.save_frames:
|
||||
Path(frames_path).mkdir(parents=True, exist_ok=True)
|
||||
self.vid_frame[idx] = 0
|
||||
if isinstance(self.vid_writer[idx], cv2.VideoWriter):
|
||||
self.vid_writer[idx].release() # release previous video writer
|
||||
if vid_cap: # video
|
||||
fps = int(vid_cap.get(cv2.CAP_PROP_FPS)) # integer required, floats produce error in MP4 codec
|
||||
w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
||||
h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
||||
else: # stream
|
||||
fps, w, h = 30, im0.shape[1], im0.shape[0]
|
||||
suffix, fourcc = (".mp4", "avc1") if MACOS else (".avi", "WMV2") if WINDOWS else (".avi", "MJPG")
|
||||
self.vid_writer[idx] = cv2.VideoWriter(
|
||||
str(Path(save_path).with_suffix(suffix)), cv2.VideoWriter_fourcc(*fourcc), fps, (w, h)
|
||||
self.vid_writer[save_path] = cv2.VideoWriter(
|
||||
filename=str(Path(save_path).with_suffix(suffix)),
|
||||
fourcc=cv2.VideoWriter_fourcc(*fourcc),
|
||||
fps=30, # integer required, floats produce error in MP4 codec
|
||||
frameSize=(im.shape[1], im.shape[0]), # (width, height)
|
||||
)
|
||||
# Write video
|
||||
self.vid_writer[idx].write(im0)
|
||||
|
||||
# Write frame
|
||||
# Save video
|
||||
self.vid_writer[save_path].write(im)
|
||||
if self.args.save_frames:
|
||||
cv2.imwrite(f"{frames_path}{self.vid_frame[idx]}.jpg", im0)
|
||||
self.vid_frame[idx] += 1
|
||||
cv2.imwrite(f"{frames_path}{frame}.jpg", im)
|
||||
|
||||
# Save images
|
||||
else:
|
||||
cv2.imwrite(save_path, im)
|
||||
|
||||
def show(self, p="", is_video=False):
|
||||
"""Display an image in a window using OpenCV imshow()."""
|
||||
im = self.plotted_img
|
||||
if platform.system() == "Linux" and p not in self.windows:
|
||||
self.windows.append(p)
|
||||
cv2.namedWindow(p, cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO) # allow window resize (Linux)
|
||||
cv2.resizeWindow(p, im.shape[1], im.shape[0]) # (width, height)
|
||||
cv2.imshow(p, im)
|
||||
cv2.waitKey(1 if is_video else 500) # 1 millisecond
|
||||
|
||||
def run_callbacks(self, event: str):
|
||||
"""Runs all registered callbacks for a specific event."""
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue