diff --git a/.gitignore b/.gitignore
index 64badb1c..0854267a 100644
--- a/.gitignore
+++ b/.gitignore
@@ -29,7 +29,7 @@ MANIFEST
# PyInstaller
# Usually these files are written by a python script from a template
-# before PyInstaller builds the exe, so as to inject date/other infos into it.
+# before PyInstaller builds the exe, so as to inject date/other info into it.
*.manifest
*.spec
diff --git a/docs/en/reference/data/loaders.md b/docs/en/reference/data/loaders.md
index 3ba4c162..99d7749a 100644
--- a/docs/en/reference/data/loaders.md
+++ b/docs/en/reference/data/loaders.md
@@ -23,7 +23,7 @@ keywords: Ultralytics, data loaders, LoadStreams, LoadImages, LoadTensor, YOLO,
-## ::: ultralytics.data.loaders.LoadImages
+## ::: ultralytics.data.loaders.LoadImagesAndVideos
diff --git a/docs/en/reference/utils/files.md b/docs/en/reference/utils/files.md
index 586373b1..e9bd16dd 100644
--- a/docs/en/reference/utils/files.md
+++ b/docs/en/reference/utils/files.md
@@ -38,3 +38,7 @@ keywords: Ultralytics, utility functions, file operations, working directory, fi
## ::: ultralytics.utils.files.get_latest_run
+
+## ::: ultralytics.utils.files.update_models
+
+
diff --git a/tests/test_python.py b/tests/test_python.py
index 0144ee8f..9450fb09 100644
--- a/tests/test_python.py
+++ b/tests/test_python.py
@@ -8,6 +8,7 @@ import cv2
import numpy as np
import pytest
import torch
+import yaml
from PIL import Image
from torchvision.transforms import ToTensor
@@ -169,8 +170,6 @@ def test_track_stream():
Note imgsz=160 required for tracking for higher confidence and better matches
"""
- import yaml
-
video_url = "https://ultralytics.com/assets/decelera_portrait_min.mov"
model = YOLO(MODEL)
model.track(video_url, imgsz=160, tracker="bytetrack.yaml")
diff --git a/ultralytics/__init__.py b/ultralytics/__init__.py
index a7278b87..d02f1311 100644
--- a/ultralytics/__init__.py
+++ b/ultralytics/__init__.py
@@ -1,6 +1,6 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
-__version__ = "8.1.25"
+__version__ = "8.1.26"
from ultralytics.data.explorer.explorer import Explorer
from ultralytics.models import RTDETR, SAM, YOLO, YOLOWorld
diff --git a/ultralytics/cfg/__init__.py b/ultralytics/cfg/__init__.py
index 8a2de594..d9d73758 100644
--- a/ultralytics/cfg/__init__.py
+++ b/ultralytics/cfg/__init__.py
@@ -396,7 +396,7 @@ def handle_yolo_settings(args: List[str]) -> None:
def handle_explorer():
"""Open the Ultralytics Explorer GUI."""
checks.check_requirements("streamlit")
- LOGGER.info(f"💡 Loading Explorer dashboard...")
+ LOGGER.info("💡 Loading Explorer dashboard...")
subprocess.run(["streamlit", "run", ROOT / "data/explorer/gui/dash.py", "--server.maxMessageSize", "2048"])
diff --git a/ultralytics/data/build.py b/ultralytics/data/build.py
index c441ee76..37c5fa41 100644
--- a/ultralytics/data/build.py
+++ b/ultralytics/data/build.py
@@ -11,7 +11,7 @@ from torch.utils.data import dataloader, distributed
from ultralytics.data.loaders import (
LOADERS,
- LoadImages,
+ LoadImagesAndVideos,
LoadPilAndNumpy,
LoadScreenshots,
LoadStreams,
@@ -150,34 +150,35 @@ def check_source(source):
return source, webcam, screenshot, from_img, in_memory, tensor
-def load_inference_source(source=None, vid_stride=1, buffer=False):
+def load_inference_source(source=None, batch=1, vid_stride=1, buffer=False):
"""
Loads an inference source for object detection and applies necessary transformations.
Args:
source (str, Path, Tensor, PIL.Image, np.ndarray): The input source for inference.
+ batch (int, optional): Batch size for dataloaders. Default is 1.
vid_stride (int, optional): The frame interval for video sources. Default is 1.
buffer (bool, optional): Determined whether stream frames will be buffered. Default is False.
Returns:
dataset (Dataset): A dataset object for the specified input source.
"""
- source, webcam, screenshot, from_img, in_memory, tensor = check_source(source)
- source_type = source.source_type if in_memory else SourceTypes(webcam, screenshot, from_img, tensor)
+ source, stream, screenshot, from_img, in_memory, tensor = check_source(source)
+ source_type = source.source_type if in_memory else SourceTypes(stream, screenshot, from_img, tensor)
# Dataloader
if tensor:
dataset = LoadTensor(source)
elif in_memory:
dataset = source
- elif webcam:
+ elif stream:
dataset = LoadStreams(source, vid_stride=vid_stride, buffer=buffer)
elif screenshot:
dataset = LoadScreenshots(source)
elif from_img:
dataset = LoadPilAndNumpy(source)
else:
- dataset = LoadImages(source, vid_stride=vid_stride)
+ dataset = LoadImagesAndVideos(source, batch=batch, vid_stride=vid_stride)
# Attach source types to the dataset
setattr(dataset, "source_type", source_type)
diff --git a/ultralytics/data/loaders.py b/ultralytics/data/loaders.py
index 6faf90c3..a0876432 100644
--- a/ultralytics/data/loaders.py
+++ b/ultralytics/data/loaders.py
@@ -24,7 +24,7 @@ from ultralytics.utils.checks import check_requirements
class SourceTypes:
"""Class to represent various types of input sources for predictions."""
- webcam: bool = False
+ stream: bool = False
screenshot: bool = False
from_img: bool = False
tensor: bool = False
@@ -32,9 +32,7 @@ class SourceTypes:
class LoadStreams:
"""
- Stream Loader for various types of video streams.
-
- Suitable for use with `yolo predict source='rtsp://example.com/media.mp4'`, supports RTSP, RTMP, HTTP, and TCP streams.
+ Stream Loader for various types of video streams, Supports RTSP, RTMP, HTTP, and TCP streams.
Attributes:
sources (str): The source input paths or URLs for the video streams.
@@ -57,6 +55,11 @@ class LoadStreams:
__iter__: Returns an iterator object for the class.
__next__: Returns source paths, transformed, and original images for processing.
__len__: Return the length of the sources object.
+
+ Example:
+ ```bash
+ yolo predict source='rtsp://example.com/media.mp4'
+ ```
"""
def __init__(self, sources="file.streams", vid_stride=1, buffer=False):
@@ -69,6 +72,7 @@ class LoadStreams:
sources = Path(sources).read_text().rsplit() if os.path.isfile(sources) else [sources]
n = len(sources)
+ self.bs = n
self.fps = [0] * n # frames per second
self.frames = [0] * n
self.threads = [None] * n
@@ -76,6 +80,8 @@ class LoadStreams:
self.imgs = [[] for _ in range(n)] # images
self.shape = [[] for _ in range(n)] # image shapes
self.sources = [ops.clean_str(x) for x in sources] # clean source names for later
+ self.info = [""] * n
+ self.is_video = [True] * n
for i, s in enumerate(sources): # index, source
# Start thread to read frames from video stream
st = f"{i + 1}/{n}: {s}... "
@@ -109,9 +115,6 @@ class LoadStreams:
self.threads[i].start()
LOGGER.info("") # newline
- # Check for common shapes
- self.bs = self.__len__()
-
def update(self, i, cap, stream):
"""Read stream `i` frames in daemon thread."""
n, f = 0, self.frames[i] # frame number, frame array
@@ -175,11 +178,11 @@ class LoadStreams:
images.append(x.pop(-1) if x else np.zeros(self.shape[i], dtype=np.uint8))
x.clear()
- return self.sources, images, None, ""
+ return self.sources, images, self.is_video, self.info
def __len__(self):
"""Return the length of the sources object."""
- return len(self.sources) # 1E12 frames = 32 streams at 30 FPS for 30 years
+ return self.bs # 1E12 frames = 32 streams at 30 FPS for 30 years
class LoadScreenshots:
@@ -243,10 +246,10 @@ class LoadScreenshots:
s = f"screen {self.screen} (LTWH): {self.left},{self.top},{self.width},{self.height}: "
self.frame += 1
- return [str(self.screen)], [im0], None, s # screen, img, vid_cap, string
+ return [str(self.screen)], [im0], [True], [s] # screen, img, is_video, string
-class LoadImages:
+class LoadImagesAndVideos:
"""
YOLOv8 image/video dataloader.
@@ -269,7 +272,7 @@ class LoadImages:
_new_video(path): Create a new cv2.VideoCapture object for a given video path.
"""
- def __init__(self, path, vid_stride=1):
+ def __init__(self, path, batch=1, vid_stride=1):
"""Initialize the Dataloader and raise FileNotFoundError if file not found."""
parent = None
if isinstance(path, str) and Path(path).suffix == ".txt": # *.txt file with img/vid/dir on each line
@@ -298,7 +301,7 @@ class LoadImages:
self.video_flag = [False] * ni + [True] * nv
self.mode = "image"
self.vid_stride = vid_stride # video frame-rate stride
- self.bs = 1
+ self.bs = batch
if any(videos):
self._new_video(videos[0]) # new video
else:
@@ -315,49 +318,68 @@ class LoadImages:
return self
def __next__(self):
- """Return next image, path and metadata from dataset."""
- if self.count == self.nf:
- raise StopIteration
- path = self.files[self.count]
-
- if self.video_flag[self.count]:
- # Read video
- self.mode = "video"
- for _ in range(self.vid_stride):
- self.cap.grab()
- success, im0 = self.cap.retrieve()
- while not success:
- self.count += 1
- self.cap.release()
- if self.count == self.nf: # last video
+ """Returns the next batch of images or video frames along with their paths and metadata."""
+ paths, imgs, is_video, info = [], [], [], []
+ while len(imgs) < self.bs:
+ if self.count >= self.nf: # end of file list
+ if len(imgs) > 0:
+ return paths, imgs, is_video, info # return last partial batch
+ else:
raise StopIteration
- path = self.files[self.count]
- self._new_video(path)
- success, im0 = self.cap.read()
- self.frame += 1
- # im0 = self._cv2_rotate(im0) # for use if cv2 autorotation is False
- s = f"video {self.count + 1}/{self.nf} ({self.frame}/{self.frames}) {path}: "
+ path = self.files[self.count]
+ if self.video_flag[self.count]:
+ self.mode = "video"
+ if not self.cap or not self.cap.isOpened():
+ self._new_video(path)
- else:
- # Read image
- self.count += 1
- im0 = cv2.imread(path) # BGR
- if im0 is None:
- raise FileNotFoundError(f"Image Not Found {path}")
- s = f"image {self.count}/{self.nf} {path}: "
+ for _ in range(self.vid_stride):
+ success = self.cap.grab()
+ if not success:
+ break # end of video or failure
- return [path], [im0], self.cap, s
+ if success:
+ success, im0 = self.cap.retrieve()
+ if success:
+ self.frame += 1
+ paths.append(path)
+ imgs.append(im0)
+ is_video.append(True)
+ info.append(f"video {self.count + 1}/{self.nf} (frame {self.frame}/{self.frames}) {path}: ")
+ if self.frame == self.frames: # end of video
+ self.count += 1
+ self.cap.release()
+ else:
+ # Move to the next file if the current video ended or failed to open
+ self.count += 1
+ if self.cap:
+ self.cap.release()
+ if self.count < self.nf:
+ self._new_video(self.files[self.count])
+ else:
+ self.mode = "image"
+ im0 = cv2.imread(path) # BGR
+ if im0 is None:
+ raise FileNotFoundError(f"Image Not Found {path}")
+ paths.append(path)
+ imgs.append(im0)
+ is_video.append(False) # no capture object for images
+ info.append(f"image {self.count + 1}/{self.nf} {path}: ")
+ self.count += 1 # move to the next file
+
+ return paths, imgs, is_video, info
def _new_video(self, path):
- """Create a new video capture object."""
+ """Creates a new video capture object for the given path."""
self.frame = 0
self.cap = cv2.VideoCapture(path)
+ if not self.cap.isOpened():
+ raise FileNotFoundError(f"Failed to open video {path}")
self.frames = int(self.cap.get(cv2.CAP_PROP_FRAME_COUNT) / self.vid_stride)
def __len__(self):
- """Returns the number of files in the object."""
- return self.nf # number of files
+ """Returns the number of batches in the object."""
+ return math.ceil(self.nf / self.bs) # number of files
class LoadPilAndNumpy:
@@ -373,7 +395,6 @@ class LoadPilAndNumpy:
im0 (list): List of images stored as Numpy arrays.
mode (str): Type of data being processed, defaults to 'image'.
bs (int): Batch size, equivalent to the length of `im0`.
- count (int): Counter for iteration, initialized at 0 during `__iter__()`.
Methods:
_single_check(im): Validate and format a single image to a Numpy array.
@@ -386,7 +407,6 @@ class LoadPilAndNumpy:
self.paths = [getattr(im, "filename", f"image{i}.jpg") for i, im in enumerate(im0)]
self.im0 = [self._single_check(im) for im in im0]
self.mode = "image"
- # Generate fake paths
self.bs = len(self.im0)
@staticmethod
@@ -409,7 +429,7 @@ class LoadPilAndNumpy:
if self.count == 1: # loop only once as it's batch inference
raise StopIteration
self.count += 1
- return self.paths, self.im0, None, ""
+ return self.paths, self.im0, [False] * self.bs, [""] * self.bs
def __iter__(self):
"""Enables iteration for class LoadPilAndNumpy."""
@@ -474,7 +494,7 @@ class LoadTensor:
if self.count == 1:
raise StopIteration
self.count += 1
- return self.paths, self.im0, None, ""
+ return self.paths, self.im0, [False] * self.bs, [""] * self.bs
def __len__(self):
"""Returns the batch size."""
@@ -498,9 +518,6 @@ def autocast_list(source):
return files
-LOADERS = LoadStreams, LoadPilAndNumpy, LoadImages, LoadScreenshots # tuple
-
-
def get_best_youtube_url(url, use_pafy=True):
"""
Retrieves the URL of the best quality MP4 video stream from a given YouTube video.
@@ -531,3 +548,7 @@ def get_best_youtube_url(url, use_pafy=True):
good_size = (f.get("width") or 0) >= 1920 or (f.get("height") or 0) >= 1080
if good_size and f["vcodec"] != "none" and f["acodec"] == "none" and f["ext"] == "mp4":
return f.get("url")
+
+
+# Define constants
+LOADERS = (LoadStreams, LoadPilAndNumpy, LoadImagesAndVideos, LoadScreenshots)
diff --git a/ultralytics/engine/model.py b/ultralytics/engine/model.py
index 9debfe19..e32c3e45 100644
--- a/ultralytics/engine/model.py
+++ b/ultralytics/engine/model.py
@@ -423,7 +423,7 @@ class Model(nn.Module):
x in sys.argv for x in ("predict", "track", "mode=predict", "mode=track")
)
- custom = {"conf": 0.25, "save": is_cli, "mode": "predict"} # method defaults
+ custom = {"conf": 0.25, "batch": 1, "save": is_cli, "mode": "predict"} # method defaults
args = {**self.overrides, **custom, **kwargs} # highest priority args on the right
prompts = args.pop("prompts", None) # for SAM-type models
@@ -474,6 +474,7 @@ class Model(nn.Module):
register_tracker(self, persist)
kwargs["conf"] = kwargs.get("conf") or 0.1 # ByteTrack-based method needs low confidence predictions as input
+ kwargs["batch"] = kwargs.get("batch") or 1 # batch-size 1 for tracking in videos
kwargs["mode"] = "track"
return self.predict(source=source, stream=stream, **kwargs)
diff --git a/ultralytics/engine/predictor.py b/ultralytics/engine/predictor.py
index e925902f..2282eed6 100644
--- a/ultralytics/engine/predictor.py
+++ b/ultralytics/engine/predictor.py
@@ -73,9 +73,7 @@ class BasePredictor:
data (dict): Data configuration.
device (torch.device): Device used for prediction.
dataset (Dataset): Dataset used for prediction.
- vid_path (str): Path to video file.
- vid_writer (cv2.VideoWriter): Video writer for saving video output.
- data_path (str): Path to data.
+ vid_writer (dict): Dictionary of {save_path: video_writer, ...} writer for saving video output.
"""
def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None):
@@ -100,10 +98,11 @@ class BasePredictor:
self.imgsz = None
self.device = None
self.dataset = None
- self.vid_path, self.vid_writer, self.vid_frame = None, None, None
+ self.vid_writer = {} # dict of {save_path: video_writer, ...}
self.plotted_img = None
- self.data_path = None
self.source_type = None
+ self.seen = 0
+ self.windows = []
self.batch = None
self.results = None
self.transforms = None
@@ -155,44 +154,6 @@ class BasePredictor:
letterbox = LetterBox(self.imgsz, auto=same_shapes and self.model.pt, stride=self.model.stride)
return [letterbox(image=x) for x in im]
- def write_results(self, idx, results, batch):
- """Write inference results to a file or directory."""
- p, im, _ = batch
- log_string = ""
- if len(im.shape) == 3:
- im = im[None] # expand for batch dim
- if self.source_type.webcam or self.source_type.from_img or self.source_type.tensor: # batch_size >= 1
- log_string += f"{idx}: "
- frame = self.dataset.count
- else:
- frame = getattr(self.dataset, "frame", 0)
- self.data_path = p
- self.txt_path = str(self.save_dir / "labels" / p.stem) + ("" if self.dataset.mode == "image" else f"_{frame}")
- log_string += "%gx%g " % im.shape[2:] # print string
- result = results[idx]
- log_string += result.verbose()
-
- if self.args.save or self.args.show: # Add bbox to image
- plot_args = {
- "line_width": self.args.line_width,
- "boxes": self.args.show_boxes,
- "conf": self.args.show_conf,
- "labels": self.args.show_labels,
- }
- if not self.args.retina_masks:
- plot_args["im_gpu"] = im[idx]
- self.plotted_img = result.plot(**plot_args)
- # Write
- if self.args.save_txt:
- result.save_txt(f"{self.txt_path}.txt", save_conf=self.args.save_conf)
- if self.args.save_crop:
- result.save_crop(
- save_dir=self.save_dir / "crops",
- file_name=self.data_path.stem + ("" if self.dataset.mode == "image" else f"_{frame}"),
- )
-
- return log_string
-
def postprocess(self, preds, img, orig_imgs):
"""Post-processes predictions for an image and returns them."""
return preds
@@ -228,18 +189,20 @@ class BasePredictor:
else None
)
self.dataset = load_inference_source(
- source=source, vid_stride=self.args.vid_stride, buffer=self.args.stream_buffer
+ source=source,
+ batch=self.args.batch,
+ vid_stride=self.args.vid_stride,
+ buffer=self.args.stream_buffer,
)
self.source_type = self.dataset.source_type
if not getattr(self, "stream", True) and (
- self.dataset.mode == "stream" # streams
- or len(self.dataset) > 1000 # images
+ self.source_type.stream
+ or self.source_type.screenshot
+ or len(self.dataset) > 1000 # many images
or any(getattr(self.dataset, "video_flag", [False]))
): # videos
LOGGER.warning(STREAM_WARNING)
- self.vid_path = [None] * self.dataset.bs
- self.vid_writer = [None] * self.dataset.bs
- self.vid_frame = [None] * self.dataset.bs
+ self.vid_writer = {}
@smart_inference_mode()
def stream_inference(self, source=None, model=None, *args, **kwargs):
@@ -271,10 +234,9 @@ class BasePredictor:
ops.Profile(device=self.device),
)
self.run_callbacks("on_predict_start")
- for batch in self.dataset:
+ for self.batch in self.dataset:
self.run_callbacks("on_predict_batch_start")
- self.batch = batch
- path, im0s, vid_cap, s = batch
+ paths, im0s, is_video, s = self.batch
# Preprocess
with profilers[0]:
@@ -290,8 +252,8 @@ class BasePredictor:
# Postprocess
with profilers[2]:
self.results = self.postprocess(preds, im, im0s)
-
self.run_callbacks("on_predict_postprocess_end")
+
# Visualize, save, write results
n = len(im0s)
for i in range(n):
@@ -301,41 +263,32 @@ class BasePredictor:
"inference": profilers[1].dt * 1e3 / n,
"postprocess": profilers[2].dt * 1e3 / n,
}
- p, im0 = path[i], None if self.source_type.tensor else im0s[i].copy()
- p = Path(p)
-
if self.args.verbose or self.args.save or self.args.save_txt or self.args.show:
- s += self.write_results(i, self.results, (p, im, im0))
- if self.args.save or self.args.save_txt:
- self.results[i].save_dir = self.save_dir.__str__()
- if self.args.show and self.plotted_img is not None:
- self.show(p)
- if self.args.save and self.plotted_img is not None:
- self.save_preds(vid_cap, i, str(self.save_dir / p.name))
+ s[i] += self.write_results(i, Path(paths[i]), im, is_video)
+
+ # Print batch results
+ if self.args.verbose:
+ LOGGER.info("\n".join(s))
self.run_callbacks("on_predict_batch_end")
yield from self.results
- # Print time (inference-only)
- if self.args.verbose:
- LOGGER.info(f"{s}{profilers[1].dt * 1E3:.1f}ms")
-
# Release assets
- if isinstance(self.vid_writer[-1], cv2.VideoWriter):
- self.vid_writer[-1].release() # release final video writer
+ for v in self.vid_writer.values():
+ if isinstance(v, cv2.VideoWriter):
+ v.release()
- # Print results
+ # Print final results
if self.args.verbose and self.seen:
t = tuple(x.t / self.seen * 1e3 for x in profilers) # speeds per image
LOGGER.info(
f"Speed: %.1fms preprocess, %.1fms inference, %.1fms postprocess per image at shape "
- f"{(1, 3, *im.shape[2:])}" % t
+ f"{(min(self.args.batch, self.seen), 3, *im.shape[2:])}" % t
)
if self.args.save or self.args.save_txt or self.args.save_crop:
nl = len(list(self.save_dir.glob("labels/*.txt"))) # number of labels
s = f"\n{nl} label{'s' * (nl > 1)} saved to {self.save_dir / 'labels'}" if self.args.save_txt else ""
LOGGER.info(f"Results saved to {colorstr('bold', self.save_dir)}{s}")
-
self.run_callbacks("on_predict_end")
def setup_model(self, model, verbose=True):
@@ -354,48 +307,81 @@ class BasePredictor:
self.args.half = self.model.fp16 # update half
self.model.eval()
- def show(self, p):
- """Display an image in a window using OpenCV imshow()."""
- im0 = self.plotted_img
- if platform.system() == "Linux" and p not in self.windows:
- self.windows.append(p)
- cv2.namedWindow(str(p), cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO) # allow window resize (Linux)
- cv2.resizeWindow(str(p), im0.shape[1], im0.shape[0])
- cv2.imshow(str(p), im0)
- cv2.waitKey(500 if self.batch[3].startswith("image") else 1) # 1 millisecond
+ def write_results(self, i, p, im, is_video):
+ """Write inference results to a file or directory."""
+ string = "" # print string
+ if len(im.shape) == 3:
+ im = im[None] # expand for batch dim
+ if self.source_type.stream or self.source_type.from_img or self.source_type.tensor: # batch_size >= 1
+ string += f"{i}: "
+ frame = self.dataset.count
+ else:
+ frame = getattr(self.dataset, "frame", 0) - len(self.results) + i
- def save_preds(self, vid_cap, idx, save_path):
+ self.txt_path = self.save_dir / "labels" / (p.stem + f"_{frame}" if is_video[i] else "")
+ string += "%gx%g " % im.shape[2:]
+ result = self.results[i]
+ result.save_dir = self.save_dir.__str__() # used in other locations
+ string += result.verbose() + f"{result.speed['inference']:.1f}ms"
+
+ # Add predictions to image
+ if self.args.save or self.args.show:
+ self.plotted_img = result.plot(
+ line_width=self.args.line_width,
+ boxes=self.args.show_boxes,
+ conf=self.args.show_conf,
+ labels=self.args.show_labels,
+ im_gpu=None if self.args.retina_masks else im[i],
+ )
+
+ # Save results
+ if self.args.save_txt:
+ result.save_txt(f"{self.txt_path}.txt", save_conf=self.args.save_conf)
+ if self.args.save_crop:
+ result.save_crop(save_dir=self.save_dir / "crops", file_name=self.txt_path.stem)
+ if self.args.show:
+ self.show(str(p), is_video[i])
+ if self.args.save:
+ self.save_predicted_images(str(self.save_dir / p.name), is_video[i], frame)
+
+ return string
+
+ def save_predicted_images(self, save_path="", is_video=False, frame=0):
"""Save video predictions as mp4 at specified path."""
- im0 = self.plotted_img
- # Save imgs
- if self.dataset.mode == "image":
- cv2.imwrite(save_path, im0)
- else: # 'video' or 'stream'
+ im = self.plotted_img
+
+ # Save videos and streams
+ if is_video:
frames_path = f'{save_path.split(".", 1)[0]}_frames/'
- if self.vid_path[idx] != save_path: # new video
- self.vid_path[idx] = save_path
+ if save_path not in self.vid_writer: # new video
if self.args.save_frames:
Path(frames_path).mkdir(parents=True, exist_ok=True)
- self.vid_frame[idx] = 0
- if isinstance(self.vid_writer[idx], cv2.VideoWriter):
- self.vid_writer[idx].release() # release previous video writer
- if vid_cap: # video
- fps = int(vid_cap.get(cv2.CAP_PROP_FPS)) # integer required, floats produce error in MP4 codec
- w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
- h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
- else: # stream
- fps, w, h = 30, im0.shape[1], im0.shape[0]
suffix, fourcc = (".mp4", "avc1") if MACOS else (".avi", "WMV2") if WINDOWS else (".avi", "MJPG")
- self.vid_writer[idx] = cv2.VideoWriter(
- str(Path(save_path).with_suffix(suffix)), cv2.VideoWriter_fourcc(*fourcc), fps, (w, h)
+ self.vid_writer[save_path] = cv2.VideoWriter(
+ filename=str(Path(save_path).with_suffix(suffix)),
+ fourcc=cv2.VideoWriter_fourcc(*fourcc),
+ fps=30, # integer required, floats produce error in MP4 codec
+ frameSize=(im.shape[1], im.shape[0]), # (width, height)
)
- # Write video
- self.vid_writer[idx].write(im0)
- # Write frame
+ # Save video
+ self.vid_writer[save_path].write(im)
if self.args.save_frames:
- cv2.imwrite(f"{frames_path}{self.vid_frame[idx]}.jpg", im0)
- self.vid_frame[idx] += 1
+ cv2.imwrite(f"{frames_path}{frame}.jpg", im)
+
+ # Save images
+ else:
+ cv2.imwrite(save_path, im)
+
+ def show(self, p="", is_video=False):
+ """Display an image in a window using OpenCV imshow()."""
+ im = self.plotted_img
+ if platform.system() == "Linux" and p not in self.windows:
+ self.windows.append(p)
+ cv2.namedWindow(p, cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO) # allow window resize (Linux)
+ cv2.resizeWindow(p, im.shape[1], im.shape[0]) # (width, height)
+ cv2.imshow(p, im)
+ cv2.waitKey(1 if is_video else 500) # 1 millisecond
def run_callbacks(self, event: str):
"""Runs all registered callbacks for a specific event."""
diff --git a/ultralytics/trackers/track.py b/ultralytics/trackers/track.py
index c80c54da..6c7d5ef0 100644
--- a/ultralytics/trackers/track.py
+++ b/ultralytics/trackers/track.py
@@ -39,6 +39,7 @@ def on_predict_start(predictor: object, persist: bool = False) -> None:
tracker = TRACKER_MAP[cfg.tracker_type](args=cfg, frame_rate=30)
trackers.append(tracker)
predictor.trackers = trackers
+ predictor.vid_path = [None] * predictor.dataset.bs # for determining when to reset tracker on new video
def on_predict_postprocess_end(predictor: object, persist: bool = False) -> None:
@@ -54,8 +55,10 @@ def on_predict_postprocess_end(predictor: object, persist: bool = False) -> None
is_obb = predictor.args.task == "obb"
for i in range(bs):
- if not persist and predictor.vid_path[i] != str(predictor.save_dir / Path(path[i]).name): # new video
+ vid_path = predictor.save_dir / Path(path[i]).name
+ if not persist and predictor.vid_path[i] != vid_path: # new video
predictor.trackers[i].reset()
+ predictor.vid_path[i] = vid_path
det = (predictor.results[i].obb if is_obb else predictor.results[i].boxes).cpu().numpy()
if len(det) == 0: