Update TFLite Docs images (#8605)
Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com>
This commit is contained in:
parent
1146bb0582
commit
36408c974c
33 changed files with 112 additions and 107 deletions
|
|
@ -194,7 +194,7 @@ The val (validation) settings for YOLO models involve various hyperparameters an
|
|||
| `max_det` | `int` | `300` | Limits the maximum number of detections per image. Useful in dense scenes to prevent excessive detections. |
|
||||
| `half` | `bool` | `True` | Enables half-precision (FP16) computation, reducing memory usage and potentially increasing speed with minimal impact on accuracy. |
|
||||
| `device` | `str` | `None` | Specifies the device for validation (`cpu`, `cuda:0`, etc.). Allows flexibility in utilizing CPU or GPU resources. |
|
||||
| `dnn` | `bool` | `False` | If `True`, uses OpenCV's DNN module for ONNX model inference, offering an alternative to PyTorch inference methods. |
|
||||
| `dnn` | `bool` | `False` | If `True`, uses the OpenCV DNN module for ONNX model inference, offering an alternative to PyTorch inference methods. |
|
||||
| `plots` | `bool` | `False` | When set to `True`, generates and saves plots of predictions versus ground truth for visual evaluation of the model's performance. |
|
||||
| `rect` | `bool` | `False` | If `True`, uses rectangular inference for batching, reducing padding and potentially increasing speed and efficiency. |
|
||||
| `split` | `str` | `val` | Determines the dataset split to use for validation (`val`, `test`, or `train`). Allows flexibility in choosing the data segment for performance evaluation. |
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue