ultralytics 8.1.42 add YOLOv9 Segment models (#9296)

Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com>
Co-authored-by: Laughing <61612323+Laughing-q@users.noreply.github.com>
Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
This commit is contained in:
Burhan 2024-04-02 06:24:29 -04:00 committed by GitHub
parent 1e547e60a0
commit 3208eb72ef
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
25 changed files with 236 additions and 93 deletions

View file

@ -64,7 +64,7 @@ Welcome to the Ultralytics Integrations page! This page provides an overview of
- [CoreML](coreml.md): CoreML, developed by [Apple](https://www.apple.com/), is a framework designed for efficiently integrating machine learning models into applications across iOS, macOS, watchOS, and tvOS, using Apple's hardware for effective and secure model deployment.
- [TF SavedModel](tf-savedmodel.md): Developed by [Google](https://www.google.com), TF SavedModel is a universal serialization format for TensorFlow models, enabling easy sharing and deployment across a wide range of platforms, from servers to edge devices.
- [TF GraphDef](tf-graphdef.md): Developed by [Google](https://www.google.com), GraphDef is TensorFlow's format for representing computation graphs, enabling optimized execution of machine learning models across diverse hardware.
- [TFLite](tflite.md): Developed by [Google](https://www.google.com), TFLite is a lightweight framework for deploying machine learning models on mobile and edge devices, ensuring fast, efficient inference with minimal memory footprint.
@ -72,7 +72,7 @@ Welcome to the Ultralytics Integrations page! This page provides an overview of
- [TFLite Edge TPU](edge-tpu.md): Developed by [Google](https://www.google.com) for optimizing TensorFlow Lite models on Edge TPUs, this model format ensures high-speed, efficient edge computing.
- [PaddlePaddle](paddlepaddle.md): An open-source deep learning platform by [Baidu](https://www.baidu.com/), PaddlePaddle enables the efficient deployment of AI models and focuses on the scalability of industrial applications.
- [NCNN](ncnn.md): Developed by [Tencent](http://www.tencent.com/), NCNN is an efficient neural network inference framework tailored for mobile devices. It enables direct deployment of AI models into apps, optimizing performance across various mobile platforms.
### Export Formats