Save optimizer as FP16 for smaller checkpoints (#9435)
Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> Co-authored-by: UltralyticsAssistant <web@ultralytics.com>
This commit is contained in:
parent
b530a3004e
commit
1703025e8e
3 changed files with 20 additions and 1 deletions
|
|
@ -42,6 +42,7 @@ from ultralytics.utils.files import get_latest_run
|
|||
from ultralytics.utils.torch_utils import (
|
||||
EarlyStopping,
|
||||
ModelEMA,
|
||||
convert_optimizer_state_dict_to_fp16,
|
||||
init_seeds,
|
||||
one_cycle,
|
||||
select_device,
|
||||
|
|
@ -488,7 +489,7 @@ class BaseTrainer:
|
|||
"model": None, # resume and final checkpoints derive from EMA
|
||||
"ema": deepcopy(self.ema.ema).half(),
|
||||
"updates": self.ema.updates,
|
||||
"optimizer": self.optimizer.state_dict(),
|
||||
"optimizer": convert_optimizer_state_dict_to_fp16(deepcopy(self.optimizer.state_dict())),
|
||||
"train_args": vars(self.args), # save as dict
|
||||
"train_metrics": {**self.metrics, **{"fitness": self.fitness}},
|
||||
"train_results": {k.strip(): v for k, v in pd.read_csv(self.csv).to_dict(orient="list").items()},
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue