Support CoreML NMS export for Segment, Pose and OBB (#19173)
Signed-off-by: Mohammed Yasin <32206511+Y-T-G@users.noreply.github.com> Co-authored-by: UltralyticsAssistant <web@ultralytics.com> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com> Co-authored-by: Laughing <61612323+Laughing-q@users.noreply.github.com>
This commit is contained in:
parent
d92ab8764b
commit
0ae4670da6
6 changed files with 20 additions and 167 deletions
|
|
@ -1,5 +1,4 @@
|
||||||
{%set tip1 = ':material-information-outline:{ title="conf, iou, agnostic_nms are also available when nms=True" }' %}
|
{%set tip1 = ':material-information-outline:{ title="conf, iou, agnostic_nms are also available when nms=True" }' %}
|
||||||
{%set tip2 = ':material-information-outline:{ title="conf, iou are also available when nms=True" }' %}
|
|
||||||
|
|
||||||
| Format | `format` Argument | Model | Metadata | Arguments |
|
| Format | `format` Argument | Model | Metadata | Arguments |
|
||||||
| ------------------------------------------------- | ----------------- | ----------------------------------------------- | -------- | --------------------------------------------------------------------------------------------- |
|
| ------------------------------------------------- | ----------------- | ----------------------------------------------- | -------- | --------------------------------------------------------------------------------------------- |
|
||||||
|
|
@ -8,7 +7,7 @@
|
||||||
| [ONNX](../integrations/onnx.md) | `onnx` | `{{ model_name or "yolo11n" }}.onnx` | ✅ | `imgsz`, `half`, `dynamic`, `simplify`, `opset`, `nms`{{ tip1 }}, `batch` |
|
| [ONNX](../integrations/onnx.md) | `onnx` | `{{ model_name or "yolo11n" }}.onnx` | ✅ | `imgsz`, `half`, `dynamic`, `simplify`, `opset`, `nms`{{ tip1 }}, `batch` |
|
||||||
| [OpenVINO](../integrations/openvino.md) | `openvino` | `{{ model_name or "yolo11n" }}_openvino_model/` | ✅ | `imgsz`, `half`, `dynamic`, `int8`, `nms`{{ tip1 }}, `batch`, `data` |
|
| [OpenVINO](../integrations/openvino.md) | `openvino` | `{{ model_name or "yolo11n" }}_openvino_model/` | ✅ | `imgsz`, `half`, `dynamic`, `int8`, `nms`{{ tip1 }}, `batch`, `data` |
|
||||||
| [TensorRT](../integrations/tensorrt.md) | `engine` | `{{ model_name or "yolo11n" }}.engine` | ✅ | `imgsz`, `half`, `dynamic`, `simplify`, `workspace`, `int8`, `nms`{{ tip1 }}, `batch`, `data` |
|
| [TensorRT](../integrations/tensorrt.md) | `engine` | `{{ model_name or "yolo11n" }}.engine` | ✅ | `imgsz`, `half`, `dynamic`, `simplify`, `workspace`, `int8`, `nms`{{ tip1 }}, `batch`, `data` |
|
||||||
| [CoreML](../integrations/coreml.md) | `coreml` | `{{ model_name or "yolo11n" }}.mlpackage` | ✅ | `imgsz`, `half`, `int8`, `nms`{{ tip2 }}, `batch` |
|
| [CoreML](../integrations/coreml.md) | `coreml` | `{{ model_name or "yolo11n" }}.mlpackage` | ✅ | `imgsz`, `half`, `int8`, `nms`{{ tip1 }}, `batch` |
|
||||||
| [TF SavedModel](../integrations/tf-savedmodel.md) | `saved_model` | `{{ model_name or "yolo11n" }}_saved_model/` | ✅ | `imgsz`, `keras`, `int8`, `nms`{{ tip1 }}, `batch` |
|
| [TF SavedModel](../integrations/tf-savedmodel.md) | `saved_model` | `{{ model_name or "yolo11n" }}_saved_model/` | ✅ | `imgsz`, `keras`, `int8`, `nms`{{ tip1 }}, `batch` |
|
||||||
| [TF GraphDef](../integrations/tf-graphdef.md) | `pb` | `{{ model_name or "yolo11n" }}.pb` | ❌ | `imgsz`, `batch` |
|
| [TF GraphDef](../integrations/tf-graphdef.md) | `pb` | `{{ model_name or "yolo11n" }}.pb` | ❌ | `imgsz`, `batch` |
|
||||||
| [TF Lite](../integrations/tflite.md) | `tflite` | `{{ model_name or "yolo11n" }}.tflite` | ✅ | `imgsz`, `half`, `int8`, `nms`{{ tip1 }}, `batch`, `data` |
|
| [TF Lite](../integrations/tflite.md) | `tflite` | `{{ model_name or "yolo11n" }}.tflite` | ✅ | `imgsz`, `half`, `int8`, `nms`{{ tip1 }}, `batch`, `data` |
|
||||||
|
|
|
||||||
|
|
@ -15,10 +15,6 @@ keywords: YOLOv8, export formats, ONNX, TensorRT, CoreML, machine learning model
|
||||||
|
|
||||||
<br><br><hr><br>
|
<br><br><hr><br>
|
||||||
|
|
||||||
## ::: ultralytics.engine.exporter.IOSDetectModel
|
|
||||||
|
|
||||||
<br><br><hr><br>
|
|
||||||
|
|
||||||
## ::: ultralytics.engine.exporter.NMSModel
|
## ::: ultralytics.engine.exporter.NMSModel
|
||||||
|
|
||||||
<br><br><hr><br>
|
<br><br><hr><br>
|
||||||
|
|
|
||||||
|
|
@ -116,14 +116,16 @@ def test_export_torchscript_matrix(task, dynamic, int8, half, batch, nms):
|
||||||
@pytest.mark.skipif(not TORCH_1_9, reason="CoreML>=7.2 not supported with PyTorch<=1.8")
|
@pytest.mark.skipif(not TORCH_1_9, reason="CoreML>=7.2 not supported with PyTorch<=1.8")
|
||||||
@pytest.mark.skipif(checks.IS_PYTHON_3_12, reason="CoreML not supported in Python 3.12")
|
@pytest.mark.skipif(checks.IS_PYTHON_3_12, reason="CoreML not supported in Python 3.12")
|
||||||
@pytest.mark.parametrize(
|
@pytest.mark.parametrize(
|
||||||
"task, dynamic, int8, half, batch",
|
"task, dynamic, int8, half, batch, nms",
|
||||||
[ # generate all combinations except for exclusion cases
|
[ # generate all combinations except for exclusion cases
|
||||||
(task, dynamic, int8, half, batch)
|
(task, dynamic, int8, half, batch, nms)
|
||||||
for task, dynamic, int8, half, batch in product(TASKS, [False], [True, False], [True, False], [1])
|
for task, dynamic, int8, half, batch, nms in product(
|
||||||
if not (int8 and half)
|
TASKS, [False], [True, False], [True, False], [1], [True, False]
|
||||||
|
)
|
||||||
|
if not ((int8 and half) or (task == "classify" and nms))
|
||||||
],
|
],
|
||||||
)
|
)
|
||||||
def test_export_coreml_matrix(task, dynamic, int8, half, batch):
|
def test_export_coreml_matrix(task, dynamic, int8, half, batch, nms):
|
||||||
"""Test YOLO exports to CoreML format with various parameter configurations."""
|
"""Test YOLO exports to CoreML format with various parameter configurations."""
|
||||||
file = YOLO(TASK2MODEL[task]).export(
|
file = YOLO(TASK2MODEL[task]).export(
|
||||||
format="coreml",
|
format="coreml",
|
||||||
|
|
@ -132,6 +134,7 @@ def test_export_coreml_matrix(task, dynamic, int8, half, batch):
|
||||||
int8=int8,
|
int8=int8,
|
||||||
half=half,
|
half=half,
|
||||||
batch=batch,
|
batch=batch,
|
||||||
|
nms=nms,
|
||||||
)
|
)
|
||||||
YOLO(file)([SOURCE] * batch, imgsz=32) # exported model inference at batch=3
|
YOLO(file)([SOURCE] * batch, imgsz=32) # exported model inference at batch=3
|
||||||
shutil.rmtree(file) # cleanup
|
shutil.rmtree(file) # cleanup
|
||||||
|
|
|
||||||
|
|
@ -84,7 +84,6 @@ from ultralytics.utils import (
|
||||||
LINUX,
|
LINUX,
|
||||||
LOGGER,
|
LOGGER,
|
||||||
MACOS,
|
MACOS,
|
||||||
PYTHON_VERSION,
|
|
||||||
RKNN_CHIPS,
|
RKNN_CHIPS,
|
||||||
ROOT,
|
ROOT,
|
||||||
WINDOWS,
|
WINDOWS,
|
||||||
|
|
@ -356,7 +355,7 @@ class Exporter:
|
||||||
|
|
||||||
y = None
|
y = None
|
||||||
for _ in range(2): # dry runs
|
for _ in range(2): # dry runs
|
||||||
y = NMSModel(model, self.args)(im) if self.args.nms and not coreml else model(im)
|
y = NMSModel(model, self.args)(im) if self.args.nms else model(im)
|
||||||
if self.args.half and onnx and self.device.type != "cpu":
|
if self.args.half and onnx and self.device.type != "cpu":
|
||||||
im, model = im.half(), model.half() # to FP16
|
im, model = im.half(), model.half() # to FP16
|
||||||
|
|
||||||
|
|
@ -766,12 +765,9 @@ class Exporter:
|
||||||
if self.model.task == "classify":
|
if self.model.task == "classify":
|
||||||
classifier_config = ct.ClassifierConfig(list(self.model.names.values())) if self.args.nms else None
|
classifier_config = ct.ClassifierConfig(list(self.model.names.values())) if self.args.nms else None
|
||||||
model = self.model
|
model = self.model
|
||||||
elif self.model.task == "detect":
|
elif self.args.nms:
|
||||||
model = IOSDetectModel(self.model, self.im) if self.args.nms else self.model
|
model = NMSModel(self.model, self.args)
|
||||||
else:
|
else:
|
||||||
if self.args.nms:
|
|
||||||
LOGGER.warning(f"{prefix} WARNING ⚠️ 'nms=True' is only available for Detect models like 'yolo11n.pt'.")
|
|
||||||
# TODO CoreML Segment and Pose model pipelining
|
|
||||||
model = self.model
|
model = self.model
|
||||||
|
|
||||||
ts = torch.jit.trace(model.eval(), self.im, strict=False) # TorchScript model
|
ts = torch.jit.trace(model.eval(), self.im, strict=False) # TorchScript model
|
||||||
|
|
@ -793,15 +789,6 @@ class Exporter:
|
||||||
op_config = cto.OpPalettizerConfig(mode="kmeans", nbits=bits, weight_threshold=512)
|
op_config = cto.OpPalettizerConfig(mode="kmeans", nbits=bits, weight_threshold=512)
|
||||||
config = cto.OptimizationConfig(global_config=op_config)
|
config = cto.OptimizationConfig(global_config=op_config)
|
||||||
ct_model = cto.palettize_weights(ct_model, config=config)
|
ct_model = cto.palettize_weights(ct_model, config=config)
|
||||||
if self.args.nms and self.model.task == "detect":
|
|
||||||
if mlmodel:
|
|
||||||
# coremltools<=6.2 NMS export requires Python<3.11
|
|
||||||
check_version(PYTHON_VERSION, "<3.11", name="Python ", hard=True)
|
|
||||||
weights_dir = None
|
|
||||||
else:
|
|
||||||
ct_model.save(str(f)) # save otherwise weights_dir does not exist
|
|
||||||
weights_dir = str(f / "Data/com.apple.CoreML/weights")
|
|
||||||
ct_model = self._pipeline_coreml(ct_model, weights_dir=weights_dir)
|
|
||||||
|
|
||||||
m = self.metadata # metadata dict
|
m = self.metadata # metadata dict
|
||||||
ct_model.short_description = m.pop("description")
|
ct_model.short_description = m.pop("description")
|
||||||
|
|
@ -1391,112 +1378,6 @@ class Exporter:
|
||||||
populator.populate()
|
populator.populate()
|
||||||
tmp_file.unlink()
|
tmp_file.unlink()
|
||||||
|
|
||||||
def _pipeline_coreml(self, model, weights_dir=None, prefix=colorstr("CoreML Pipeline:")):
|
|
||||||
"""YOLO CoreML pipeline."""
|
|
||||||
import coremltools as ct # noqa
|
|
||||||
|
|
||||||
LOGGER.info(f"{prefix} starting pipeline with coremltools {ct.__version__}...")
|
|
||||||
_, _, h, w = list(self.im.shape) # BCHW
|
|
||||||
|
|
||||||
# Output shapes
|
|
||||||
spec = model.get_spec()
|
|
||||||
out0, out1 = iter(spec.description.output)
|
|
||||||
if MACOS:
|
|
||||||
from PIL import Image
|
|
||||||
|
|
||||||
img = Image.new("RGB", (w, h)) # w=192, h=320
|
|
||||||
out = model.predict({"image": img})
|
|
||||||
out0_shape = out[out0.name].shape # (3780, 80)
|
|
||||||
out1_shape = out[out1.name].shape # (3780, 4)
|
|
||||||
else: # linux and windows can not run model.predict(), get sizes from PyTorch model output y
|
|
||||||
out0_shape = self.output_shape[2], self.output_shape[1] - 4 # (3780, 80)
|
|
||||||
out1_shape = self.output_shape[2], 4 # (3780, 4)
|
|
||||||
|
|
||||||
# Checks
|
|
||||||
names = self.metadata["names"]
|
|
||||||
nx, ny = spec.description.input[0].type.imageType.width, spec.description.input[0].type.imageType.height
|
|
||||||
_, nc = out0_shape # number of anchors, number of classes
|
|
||||||
assert len(names) == nc, f"{len(names)} names found for nc={nc}" # check
|
|
||||||
|
|
||||||
# Define output shapes (missing)
|
|
||||||
out0.type.multiArrayType.shape[:] = out0_shape # (3780, 80)
|
|
||||||
out1.type.multiArrayType.shape[:] = out1_shape # (3780, 4)
|
|
||||||
|
|
||||||
# Model from spec
|
|
||||||
model = ct.models.MLModel(spec, weights_dir=weights_dir)
|
|
||||||
|
|
||||||
# 3. Create NMS protobuf
|
|
||||||
nms_spec = ct.proto.Model_pb2.Model()
|
|
||||||
nms_spec.specificationVersion = 5
|
|
||||||
for i in range(2):
|
|
||||||
decoder_output = model._spec.description.output[i].SerializeToString()
|
|
||||||
nms_spec.description.input.add()
|
|
||||||
nms_spec.description.input[i].ParseFromString(decoder_output)
|
|
||||||
nms_spec.description.output.add()
|
|
||||||
nms_spec.description.output[i].ParseFromString(decoder_output)
|
|
||||||
|
|
||||||
nms_spec.description.output[0].name = "confidence"
|
|
||||||
nms_spec.description.output[1].name = "coordinates"
|
|
||||||
|
|
||||||
output_sizes = [nc, 4]
|
|
||||||
for i in range(2):
|
|
||||||
ma_type = nms_spec.description.output[i].type.multiArrayType
|
|
||||||
ma_type.shapeRange.sizeRanges.add()
|
|
||||||
ma_type.shapeRange.sizeRanges[0].lowerBound = 0
|
|
||||||
ma_type.shapeRange.sizeRanges[0].upperBound = -1
|
|
||||||
ma_type.shapeRange.sizeRanges.add()
|
|
||||||
ma_type.shapeRange.sizeRanges[1].lowerBound = output_sizes[i]
|
|
||||||
ma_type.shapeRange.sizeRanges[1].upperBound = output_sizes[i]
|
|
||||||
del ma_type.shape[:]
|
|
||||||
|
|
||||||
nms = nms_spec.nonMaximumSuppression
|
|
||||||
nms.confidenceInputFeatureName = out0.name # 1x507x80
|
|
||||||
nms.coordinatesInputFeatureName = out1.name # 1x507x4
|
|
||||||
nms.confidenceOutputFeatureName = "confidence"
|
|
||||||
nms.coordinatesOutputFeatureName = "coordinates"
|
|
||||||
nms.iouThresholdInputFeatureName = "iouThreshold"
|
|
||||||
nms.confidenceThresholdInputFeatureName = "confidenceThreshold"
|
|
||||||
nms.iouThreshold = self.args.iou
|
|
||||||
nms.confidenceThreshold = self.args.conf
|
|
||||||
nms.pickTop.perClass = True
|
|
||||||
nms.stringClassLabels.vector.extend(names.values())
|
|
||||||
nms_model = ct.models.MLModel(nms_spec)
|
|
||||||
|
|
||||||
# 4. Pipeline models together
|
|
||||||
pipeline = ct.models.pipeline.Pipeline(
|
|
||||||
input_features=[
|
|
||||||
("image", ct.models.datatypes.Array(3, ny, nx)),
|
|
||||||
("iouThreshold", ct.models.datatypes.Double()),
|
|
||||||
("confidenceThreshold", ct.models.datatypes.Double()),
|
|
||||||
],
|
|
||||||
output_features=["confidence", "coordinates"],
|
|
||||||
)
|
|
||||||
pipeline.add_model(model)
|
|
||||||
pipeline.add_model(nms_model)
|
|
||||||
|
|
||||||
# Correct datatypes
|
|
||||||
pipeline.spec.description.input[0].ParseFromString(model._spec.description.input[0].SerializeToString())
|
|
||||||
pipeline.spec.description.output[0].ParseFromString(nms_model._spec.description.output[0].SerializeToString())
|
|
||||||
pipeline.spec.description.output[1].ParseFromString(nms_model._spec.description.output[1].SerializeToString())
|
|
||||||
|
|
||||||
# Update metadata
|
|
||||||
pipeline.spec.specificationVersion = 5
|
|
||||||
pipeline.spec.description.metadata.userDefined.update(
|
|
||||||
{"IoU threshold": str(nms.iouThreshold), "Confidence threshold": str(nms.confidenceThreshold)}
|
|
||||||
)
|
|
||||||
|
|
||||||
# Save the model
|
|
||||||
model = ct.models.MLModel(pipeline.spec, weights_dir=weights_dir)
|
|
||||||
model.input_description["image"] = "Input image"
|
|
||||||
model.input_description["iouThreshold"] = f"(optional) IoU threshold override (default: {nms.iouThreshold})"
|
|
||||||
model.input_description["confidenceThreshold"] = (
|
|
||||||
f"(optional) Confidence threshold override (default: {nms.confidenceThreshold})"
|
|
||||||
)
|
|
||||||
model.output_description["confidence"] = 'Boxes × Class confidence (see user-defined metadata "classes")'
|
|
||||||
model.output_description["coordinates"] = "Boxes × [x, y, width, height] (relative to image size)"
|
|
||||||
LOGGER.info(f"{prefix} pipeline success")
|
|
||||||
return model
|
|
||||||
|
|
||||||
def add_callback(self, event: str, callback):
|
def add_callback(self, event: str, callback):
|
||||||
"""Appends the given callback."""
|
"""Appends the given callback."""
|
||||||
self.callbacks[event].append(callback)
|
self.callbacks[event].append(callback)
|
||||||
|
|
@ -1507,26 +1388,6 @@ class Exporter:
|
||||||
callback(self)
|
callback(self)
|
||||||
|
|
||||||
|
|
||||||
class IOSDetectModel(torch.nn.Module):
|
|
||||||
"""Wrap an Ultralytics YOLO model for Apple iOS CoreML export."""
|
|
||||||
|
|
||||||
def __init__(self, model, im):
|
|
||||||
"""Initialize the IOSDetectModel class with a YOLO model and example image."""
|
|
||||||
super().__init__()
|
|
||||||
_, _, h, w = im.shape # batch, channel, height, width
|
|
||||||
self.model = model
|
|
||||||
self.nc = len(model.names) # number of classes
|
|
||||||
if w == h:
|
|
||||||
self.normalize = 1.0 / w # scalar
|
|
||||||
else:
|
|
||||||
self.normalize = torch.tensor([1.0 / w, 1.0 / h, 1.0 / w, 1.0 / h]) # broadcast (slower, smaller)
|
|
||||||
|
|
||||||
def forward(self, x):
|
|
||||||
"""Normalize predictions of object detection model with input size-dependent factors."""
|
|
||||||
xywh, cls = self.model(x)[0].transpose(0, 1).split((4, self.nc), 1)
|
|
||||||
return cls, xywh * self.normalize # confidence (3780, 80), coordinates (3780, 4)
|
|
||||||
|
|
||||||
|
|
||||||
class NMSModel(torch.nn.Module):
|
class NMSModel(torch.nn.Module):
|
||||||
"""Model wrapper with embedded NMS for Detect, Segment, Pose and OBB."""
|
"""Model wrapper with embedded NMS for Detect, Segment, Pose and OBB."""
|
||||||
|
|
||||||
|
|
@ -1585,7 +1446,8 @@ class NMSModel(torch.nn.Module):
|
||||||
box = xywh2xyxy(box)
|
box = xywh2xyxy(box)
|
||||||
if self.is_tf:
|
if self.is_tf:
|
||||||
# TFlite bug returns less boxes
|
# TFlite bug returns less boxes
|
||||||
box = torch.nn.functional.pad(box, (0, 0, 0, mask.shape[0] - box.shape[0]))
|
pad = torch.zeros((mask.shape[0] - box.shape[0], box.shape[-1]), device=box.device, dtype=box.dtype)
|
||||||
|
box = torch.cat((box, pad))
|
||||||
nmsbox = box.clone()
|
nmsbox = box.clone()
|
||||||
# `8` is the minimum value experimented to get correct NMS results for obb
|
# `8` is the minimum value experimented to get correct NMS results for obb
|
||||||
multiplier = 8 if self.obb else 1
|
multiplier = 8 if self.obb else 1
|
||||||
|
|
@ -1622,6 +1484,6 @@ class NMSModel(torch.nn.Module):
|
||||||
[box[keep], score[keep].view(-1, 1), cls[keep].view(-1, 1).to(out.dtype), extra[keep]], dim=-1
|
[box[keep], score[keep].view(-1, 1), cls[keep].view(-1, 1).to(out.dtype), extra[keep]], dim=-1
|
||||||
)
|
)
|
||||||
# Zero-pad to max_det size to avoid reshape error
|
# Zero-pad to max_det size to avoid reshape error
|
||||||
pad = (0, 0, 0, self.args.max_det - dets.shape[0])
|
pad = torch.zeros((self.args.max_det - dets.shape[0], out.shape[-1]), device=out.device, dtype=out.dtype)
|
||||||
out[i] = torch.nn.functional.pad(dets, pad)
|
out[i] = torch.cat((dets, pad))
|
||||||
return (out, preds[1]) if self.model.task == "segment" else out
|
return (out, preds[1]) if self.model.task == "segment" else out
|
||||||
|
|
|
||||||
|
|
@ -640,14 +640,10 @@ class AutoBackend(nn.Module):
|
||||||
y = self.model.predict({"image": im_pil}) # coordinates are xywh normalized
|
y = self.model.predict({"image": im_pil}) # coordinates are xywh normalized
|
||||||
if "confidence" in y:
|
if "confidence" in y:
|
||||||
raise TypeError(
|
raise TypeError(
|
||||||
"Ultralytics only supports inference of non-pipelined CoreML models exported with "
|
"'model={w}' has an NMS pipeline created by an older version of Ultralytics. "
|
||||||
f"'nms=False', but 'model={w}' has an NMS pipeline created by an 'nms=True' export."
|
"CoreML inference with NMS is only supported for models exported with latest Ultralytics. "
|
||||||
|
"You may export the model again with latest Ultralytics to resolve this."
|
||||||
)
|
)
|
||||||
# TODO: CoreML NMS inference handling
|
|
||||||
# from ultralytics.utils.ops import xywh2xyxy
|
|
||||||
# box = xywh2xyxy(y['coordinates'] * [[w, h, w, h]]) # xyxy pixels
|
|
||||||
# conf, cls = y['confidence'].max(1), y['confidence'].argmax(1).astype(np.float32)
|
|
||||||
# y = np.concatenate((box, conf.reshape(-1, 1), cls.reshape(-1, 1)), 1)
|
|
||||||
y = list(y.values())
|
y = list(y.values())
|
||||||
if len(y) == 2 and len(y[1].shape) != 4: # segmentation model
|
if len(y) == 2 and len(y[1].shape) != 4: # segmentation model
|
||||||
y = list(reversed(y)) # reversed for segmentation models (pred, proto)
|
y = list(reversed(y)) # reversed for segmentation models (pred, proto)
|
||||||
|
|
|
||||||
|
|
@ -441,12 +441,9 @@ def xywh2xyxy(x):
|
||||||
y (np.ndarray | torch.Tensor): The bounding box coordinates in (x1, y1, x2, y2) format.
|
y (np.ndarray | torch.Tensor): The bounding box coordinates in (x1, y1, x2, y2) format.
|
||||||
"""
|
"""
|
||||||
assert x.shape[-1] == 4, f"input shape last dimension expected 4 but input shape is {x.shape}"
|
assert x.shape[-1] == 4, f"input shape last dimension expected 4 but input shape is {x.shape}"
|
||||||
y = empty_like(x) # faster than clone/copy
|
|
||||||
xy = x[..., :2] # centers
|
xy = x[..., :2] # centers
|
||||||
wh = x[..., 2:] / 2 # half width-height
|
wh = x[..., 2:] / 2 # half width-height
|
||||||
y[..., :2] = xy - wh # top left xy
|
return (np.concatenate if isinstance(x, np.ndarray) else torch.cat)((xy - wh, xy + wh), -1)
|
||||||
y[..., 2:] = xy + wh # bottom right xy
|
|
||||||
return y
|
|
||||||
|
|
||||||
|
|
||||||
def xywhn2xyxy(x, w=640, h=640, padw=0, padh=0):
|
def xywhn2xyxy(x, w=640, h=640, padw=0, padh=0):
|
||||||
|
|
|
||||||
Loading…
Add table
Add a link
Reference in a new issue