From 0ae4670da6471e3d4ae4e7cddc6d050fccaaa5f2 Mon Sep 17 00:00:00 2001 From: Mohammed Yasin <32206511+Y-T-G@users.noreply.github.com> Date: Mon, 17 Feb 2025 15:01:12 +0800 Subject: [PATCH] Support CoreML NMS export for Segment, Pose and OBB (#19173) Signed-off-by: Mohammed Yasin <32206511+Y-T-G@users.noreply.github.com> Co-authored-by: UltralyticsAssistant Co-authored-by: Glenn Jocher Co-authored-by: Laughing <61612323+Laughing-q@users.noreply.github.com> --- docs/en/macros/export-table.md | 3 +- docs/en/reference/engine/exporter.md | 4 - tests/test_exports.py | 13 ++- ultralytics/engine/exporter.py | 152 ++------------------------- ultralytics/nn/autobackend.py | 10 +- ultralytics/utils/ops.py | 5 +- 6 files changed, 20 insertions(+), 167 deletions(-) diff --git a/docs/en/macros/export-table.md b/docs/en/macros/export-table.md index 3ac7170c..09a519bd 100644 --- a/docs/en/macros/export-table.md +++ b/docs/en/macros/export-table.md @@ -1,5 +1,4 @@ {%set tip1 = ':material-information-outline:{ title="conf, iou, agnostic_nms are also available when nms=True" }' %} -{%set tip2 = ':material-information-outline:{ title="conf, iou are also available when nms=True" }' %} | Format | `format` Argument | Model | Metadata | Arguments | | ------------------------------------------------- | ----------------- | ----------------------------------------------- | -------- | --------------------------------------------------------------------------------------------- | @@ -8,7 +7,7 @@ | [ONNX](../integrations/onnx.md) | `onnx` | `{{ model_name or "yolo11n" }}.onnx` | ✅ | `imgsz`, `half`, `dynamic`, `simplify`, `opset`, `nms`{{ tip1 }}, `batch` | | [OpenVINO](../integrations/openvino.md) | `openvino` | `{{ model_name or "yolo11n" }}_openvino_model/` | ✅ | `imgsz`, `half`, `dynamic`, `int8`, `nms`{{ tip1 }}, `batch`, `data` | | [TensorRT](../integrations/tensorrt.md) | `engine` | `{{ model_name or "yolo11n" }}.engine` | ✅ | `imgsz`, `half`, `dynamic`, `simplify`, `workspace`, `int8`, `nms`{{ tip1 }}, `batch`, `data` | -| [CoreML](../integrations/coreml.md) | `coreml` | `{{ model_name or "yolo11n" }}.mlpackage` | ✅ | `imgsz`, `half`, `int8`, `nms`{{ tip2 }}, `batch` | +| [CoreML](../integrations/coreml.md) | `coreml` | `{{ model_name or "yolo11n" }}.mlpackage` | ✅ | `imgsz`, `half`, `int8`, `nms`{{ tip1 }}, `batch` | | [TF SavedModel](../integrations/tf-savedmodel.md) | `saved_model` | `{{ model_name or "yolo11n" }}_saved_model/` | ✅ | `imgsz`, `keras`, `int8`, `nms`{{ tip1 }}, `batch` | | [TF GraphDef](../integrations/tf-graphdef.md) | `pb` | `{{ model_name or "yolo11n" }}.pb` | ❌ | `imgsz`, `batch` | | [TF Lite](../integrations/tflite.md) | `tflite` | `{{ model_name or "yolo11n" }}.tflite` | ✅ | `imgsz`, `half`, `int8`, `nms`{{ tip1 }}, `batch`, `data` | diff --git a/docs/en/reference/engine/exporter.md b/docs/en/reference/engine/exporter.md index a650b314..b65d6a2d 100644 --- a/docs/en/reference/engine/exporter.md +++ b/docs/en/reference/engine/exporter.md @@ -15,10 +15,6 @@ keywords: YOLOv8, export formats, ONNX, TensorRT, CoreML, machine learning model



-## ::: ultralytics.engine.exporter.IOSDetectModel - -



- ## ::: ultralytics.engine.exporter.NMSModel



diff --git a/tests/test_exports.py b/tests/test_exports.py index 0faba6d4..f69c4a40 100644 --- a/tests/test_exports.py +++ b/tests/test_exports.py @@ -116,14 +116,16 @@ def test_export_torchscript_matrix(task, dynamic, int8, half, batch, nms): @pytest.mark.skipif(not TORCH_1_9, reason="CoreML>=7.2 not supported with PyTorch<=1.8") @pytest.mark.skipif(checks.IS_PYTHON_3_12, reason="CoreML not supported in Python 3.12") @pytest.mark.parametrize( - "task, dynamic, int8, half, batch", + "task, dynamic, int8, half, batch, nms", [ # generate all combinations except for exclusion cases - (task, dynamic, int8, half, batch) - for task, dynamic, int8, half, batch in product(TASKS, [False], [True, False], [True, False], [1]) - if not (int8 and half) + (task, dynamic, int8, half, batch, nms) + for task, dynamic, int8, half, batch, nms in product( + TASKS, [False], [True, False], [True, False], [1], [True, False] + ) + if not ((int8 and half) or (task == "classify" and nms)) ], ) -def test_export_coreml_matrix(task, dynamic, int8, half, batch): +def test_export_coreml_matrix(task, dynamic, int8, half, batch, nms): """Test YOLO exports to CoreML format with various parameter configurations.""" file = YOLO(TASK2MODEL[task]).export( format="coreml", @@ -132,6 +134,7 @@ def test_export_coreml_matrix(task, dynamic, int8, half, batch): int8=int8, half=half, batch=batch, + nms=nms, ) YOLO(file)([SOURCE] * batch, imgsz=32) # exported model inference at batch=3 shutil.rmtree(file) # cleanup diff --git a/ultralytics/engine/exporter.py b/ultralytics/engine/exporter.py index 283aafef..ccfa2f2a 100644 --- a/ultralytics/engine/exporter.py +++ b/ultralytics/engine/exporter.py @@ -84,7 +84,6 @@ from ultralytics.utils import ( LINUX, LOGGER, MACOS, - PYTHON_VERSION, RKNN_CHIPS, ROOT, WINDOWS, @@ -356,7 +355,7 @@ class Exporter: y = None for _ in range(2): # dry runs - y = NMSModel(model, self.args)(im) if self.args.nms and not coreml else model(im) + y = NMSModel(model, self.args)(im) if self.args.nms else model(im) if self.args.half and onnx and self.device.type != "cpu": im, model = im.half(), model.half() # to FP16 @@ -766,12 +765,9 @@ class Exporter: if self.model.task == "classify": classifier_config = ct.ClassifierConfig(list(self.model.names.values())) if self.args.nms else None model = self.model - elif self.model.task == "detect": - model = IOSDetectModel(self.model, self.im) if self.args.nms else self.model + elif self.args.nms: + model = NMSModel(self.model, self.args) else: - if self.args.nms: - LOGGER.warning(f"{prefix} WARNING ⚠️ 'nms=True' is only available for Detect models like 'yolo11n.pt'.") - # TODO CoreML Segment and Pose model pipelining model = self.model ts = torch.jit.trace(model.eval(), self.im, strict=False) # TorchScript model @@ -793,15 +789,6 @@ class Exporter: op_config = cto.OpPalettizerConfig(mode="kmeans", nbits=bits, weight_threshold=512) config = cto.OptimizationConfig(global_config=op_config) ct_model = cto.palettize_weights(ct_model, config=config) - if self.args.nms and self.model.task == "detect": - if mlmodel: - # coremltools<=6.2 NMS export requires Python<3.11 - check_version(PYTHON_VERSION, "<3.11", name="Python ", hard=True) - weights_dir = None - else: - ct_model.save(str(f)) # save otherwise weights_dir does not exist - weights_dir = str(f / "Data/com.apple.CoreML/weights") - ct_model = self._pipeline_coreml(ct_model, weights_dir=weights_dir) m = self.metadata # metadata dict ct_model.short_description = m.pop("description") @@ -1391,112 +1378,6 @@ class Exporter: populator.populate() tmp_file.unlink() - def _pipeline_coreml(self, model, weights_dir=None, prefix=colorstr("CoreML Pipeline:")): - """YOLO CoreML pipeline.""" - import coremltools as ct # noqa - - LOGGER.info(f"{prefix} starting pipeline with coremltools {ct.__version__}...") - _, _, h, w = list(self.im.shape) # BCHW - - # Output shapes - spec = model.get_spec() - out0, out1 = iter(spec.description.output) - if MACOS: - from PIL import Image - - img = Image.new("RGB", (w, h)) # w=192, h=320 - out = model.predict({"image": img}) - out0_shape = out[out0.name].shape # (3780, 80) - out1_shape = out[out1.name].shape # (3780, 4) - else: # linux and windows can not run model.predict(), get sizes from PyTorch model output y - out0_shape = self.output_shape[2], self.output_shape[1] - 4 # (3780, 80) - out1_shape = self.output_shape[2], 4 # (3780, 4) - - # Checks - names = self.metadata["names"] - nx, ny = spec.description.input[0].type.imageType.width, spec.description.input[0].type.imageType.height - _, nc = out0_shape # number of anchors, number of classes - assert len(names) == nc, f"{len(names)} names found for nc={nc}" # check - - # Define output shapes (missing) - out0.type.multiArrayType.shape[:] = out0_shape # (3780, 80) - out1.type.multiArrayType.shape[:] = out1_shape # (3780, 4) - - # Model from spec - model = ct.models.MLModel(spec, weights_dir=weights_dir) - - # 3. Create NMS protobuf - nms_spec = ct.proto.Model_pb2.Model() - nms_spec.specificationVersion = 5 - for i in range(2): - decoder_output = model._spec.description.output[i].SerializeToString() - nms_spec.description.input.add() - nms_spec.description.input[i].ParseFromString(decoder_output) - nms_spec.description.output.add() - nms_spec.description.output[i].ParseFromString(decoder_output) - - nms_spec.description.output[0].name = "confidence" - nms_spec.description.output[1].name = "coordinates" - - output_sizes = [nc, 4] - for i in range(2): - ma_type = nms_spec.description.output[i].type.multiArrayType - ma_type.shapeRange.sizeRanges.add() - ma_type.shapeRange.sizeRanges[0].lowerBound = 0 - ma_type.shapeRange.sizeRanges[0].upperBound = -1 - ma_type.shapeRange.sizeRanges.add() - ma_type.shapeRange.sizeRanges[1].lowerBound = output_sizes[i] - ma_type.shapeRange.sizeRanges[1].upperBound = output_sizes[i] - del ma_type.shape[:] - - nms = nms_spec.nonMaximumSuppression - nms.confidenceInputFeatureName = out0.name # 1x507x80 - nms.coordinatesInputFeatureName = out1.name # 1x507x4 - nms.confidenceOutputFeatureName = "confidence" - nms.coordinatesOutputFeatureName = "coordinates" - nms.iouThresholdInputFeatureName = "iouThreshold" - nms.confidenceThresholdInputFeatureName = "confidenceThreshold" - nms.iouThreshold = self.args.iou - nms.confidenceThreshold = self.args.conf - nms.pickTop.perClass = True - nms.stringClassLabels.vector.extend(names.values()) - nms_model = ct.models.MLModel(nms_spec) - - # 4. Pipeline models together - pipeline = ct.models.pipeline.Pipeline( - input_features=[ - ("image", ct.models.datatypes.Array(3, ny, nx)), - ("iouThreshold", ct.models.datatypes.Double()), - ("confidenceThreshold", ct.models.datatypes.Double()), - ], - output_features=["confidence", "coordinates"], - ) - pipeline.add_model(model) - pipeline.add_model(nms_model) - - # Correct datatypes - pipeline.spec.description.input[0].ParseFromString(model._spec.description.input[0].SerializeToString()) - pipeline.spec.description.output[0].ParseFromString(nms_model._spec.description.output[0].SerializeToString()) - pipeline.spec.description.output[1].ParseFromString(nms_model._spec.description.output[1].SerializeToString()) - - # Update metadata - pipeline.spec.specificationVersion = 5 - pipeline.spec.description.metadata.userDefined.update( - {"IoU threshold": str(nms.iouThreshold), "Confidence threshold": str(nms.confidenceThreshold)} - ) - - # Save the model - model = ct.models.MLModel(pipeline.spec, weights_dir=weights_dir) - model.input_description["image"] = "Input image" - model.input_description["iouThreshold"] = f"(optional) IoU threshold override (default: {nms.iouThreshold})" - model.input_description["confidenceThreshold"] = ( - f"(optional) Confidence threshold override (default: {nms.confidenceThreshold})" - ) - model.output_description["confidence"] = 'Boxes × Class confidence (see user-defined metadata "classes")' - model.output_description["coordinates"] = "Boxes × [x, y, width, height] (relative to image size)" - LOGGER.info(f"{prefix} pipeline success") - return model - def add_callback(self, event: str, callback): """Appends the given callback.""" self.callbacks[event].append(callback) @@ -1507,26 +1388,6 @@ class Exporter: callback(self) -class IOSDetectModel(torch.nn.Module): - """Wrap an Ultralytics YOLO model for Apple iOS CoreML export.""" - - def __init__(self, model, im): - """Initialize the IOSDetectModel class with a YOLO model and example image.""" - super().__init__() - _, _, h, w = im.shape # batch, channel, height, width - self.model = model - self.nc = len(model.names) # number of classes - if w == h: - self.normalize = 1.0 / w # scalar - else: - self.normalize = torch.tensor([1.0 / w, 1.0 / h, 1.0 / w, 1.0 / h]) # broadcast (slower, smaller) - - def forward(self, x): - """Normalize predictions of object detection model with input size-dependent factors.""" - xywh, cls = self.model(x)[0].transpose(0, 1).split((4, self.nc), 1) - return cls, xywh * self.normalize # confidence (3780, 80), coordinates (3780, 4) - - class NMSModel(torch.nn.Module): """Model wrapper with embedded NMS for Detect, Segment, Pose and OBB.""" @@ -1585,7 +1446,8 @@ class NMSModel(torch.nn.Module): box = xywh2xyxy(box) if self.is_tf: # TFlite bug returns less boxes - box = torch.nn.functional.pad(box, (0, 0, 0, mask.shape[0] - box.shape[0])) + pad = torch.zeros((mask.shape[0] - box.shape[0], box.shape[-1]), device=box.device, dtype=box.dtype) + box = torch.cat((box, pad)) nmsbox = box.clone() # `8` is the minimum value experimented to get correct NMS results for obb multiplier = 8 if self.obb else 1 @@ -1622,6 +1484,6 @@ class NMSModel(torch.nn.Module): [box[keep], score[keep].view(-1, 1), cls[keep].view(-1, 1).to(out.dtype), extra[keep]], dim=-1 ) # Zero-pad to max_det size to avoid reshape error - pad = (0, 0, 0, self.args.max_det - dets.shape[0]) - out[i] = torch.nn.functional.pad(dets, pad) + pad = torch.zeros((self.args.max_det - dets.shape[0], out.shape[-1]), device=out.device, dtype=out.dtype) + out[i] = torch.cat((dets, pad)) return (out, preds[1]) if self.model.task == "segment" else out diff --git a/ultralytics/nn/autobackend.py b/ultralytics/nn/autobackend.py index e563e062..99c0fd12 100644 --- a/ultralytics/nn/autobackend.py +++ b/ultralytics/nn/autobackend.py @@ -640,14 +640,10 @@ class AutoBackend(nn.Module): y = self.model.predict({"image": im_pil}) # coordinates are xywh normalized if "confidence" in y: raise TypeError( - "Ultralytics only supports inference of non-pipelined CoreML models exported with " - f"'nms=False', but 'model={w}' has an NMS pipeline created by an 'nms=True' export." + "'model={w}' has an NMS pipeline created by an older version of Ultralytics. " + "CoreML inference with NMS is only supported for models exported with latest Ultralytics. " + "You may export the model again with latest Ultralytics to resolve this." ) - # TODO: CoreML NMS inference handling - # from ultralytics.utils.ops import xywh2xyxy - # box = xywh2xyxy(y['coordinates'] * [[w, h, w, h]]) # xyxy pixels - # conf, cls = y['confidence'].max(1), y['confidence'].argmax(1).astype(np.float32) - # y = np.concatenate((box, conf.reshape(-1, 1), cls.reshape(-1, 1)), 1) y = list(y.values()) if len(y) == 2 and len(y[1].shape) != 4: # segmentation model y = list(reversed(y)) # reversed for segmentation models (pred, proto) diff --git a/ultralytics/utils/ops.py b/ultralytics/utils/ops.py index 84e24a4b..078f7a29 100644 --- a/ultralytics/utils/ops.py +++ b/ultralytics/utils/ops.py @@ -441,12 +441,9 @@ def xywh2xyxy(x): y (np.ndarray | torch.Tensor): The bounding box coordinates in (x1, y1, x2, y2) format. """ assert x.shape[-1] == 4, f"input shape last dimension expected 4 but input shape is {x.shape}" - y = empty_like(x) # faster than clone/copy xy = x[..., :2] # centers wh = x[..., 2:] / 2 # half width-height - y[..., :2] = xy - wh # top left xy - y[..., 2:] = xy + wh # bottom right xy - return y + return (np.concatenate if isinstance(x, np.ndarray) else torch.cat)((xy - wh, xy + wh), -1) def xywhn2xyxy(x, w=640, h=640, padw=0, padh=0):