ultralytics-ascend/ultralytics/models/yolo/detect/predict.py
Mohammed Yasin 9181ff62f5
ultralytics 8.3.67 NMS Export for Detect, Segment, Pose and OBB YOLO models (#18484)
Signed-off-by: Mohammed Yasin <32206511+Y-T-G@users.noreply.github.com>
Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com>
Co-authored-by: UltralyticsAssistant <web@ultralytics.com>
Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
Co-authored-by: Laughing <61612323+Laughing-q@users.noreply.github.com>
Co-authored-by: Laughing-q <1185102784@qq.com>
Co-authored-by: Ultralytics Assistant <135830346+UltralyticsAssistant@users.noreply.github.com>
2025-01-24 11:00:36 +01:00

73 lines
2.8 KiB
Python

# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
from ultralytics.engine.predictor import BasePredictor
from ultralytics.engine.results import Results
from ultralytics.utils import ops
class DetectionPredictor(BasePredictor):
"""
A class extending the BasePredictor class for prediction based on a detection model.
Example:
```python
from ultralytics.utils import ASSETS
from ultralytics.models.yolo.detect import DetectionPredictor
args = dict(model="yolo11n.pt", source=ASSETS)
predictor = DetectionPredictor(overrides=args)
predictor.predict_cli()
```
"""
def postprocess(self, preds, img, orig_imgs, **kwargs):
"""Post-processes predictions and returns a list of Results objects."""
preds = ops.non_max_suppression(
preds,
self.args.conf,
self.args.iou,
self.args.classes,
self.args.agnostic_nms,
max_det=self.args.max_det,
nc=len(self.model.names),
end2end=getattr(self.model, "end2end", False),
rotated=self.args.task == "obb",
)
if not isinstance(orig_imgs, list): # input images are a torch.Tensor, not a list
orig_imgs = ops.convert_torch2numpy_batch(orig_imgs)
return self.construct_results(preds, img, orig_imgs, **kwargs)
def construct_results(self, preds, img, orig_imgs):
"""
Constructs a list of result objects from the predictions.
Args:
preds (List[torch.Tensor]): List of predicted bounding boxes and scores.
img (torch.Tensor): The image after preprocessing.
orig_imgs (List[np.ndarray]): List of original images before preprocessing.
Returns:
(list): List of result objects containing the original images, image paths, class names, and bounding boxes.
"""
return [
self.construct_result(pred, img, orig_img, img_path)
for pred, orig_img, img_path in zip(preds, orig_imgs, self.batch[0])
]
def construct_result(self, pred, img, orig_img, img_path):
"""
Constructs the result object from the prediction.
Args:
pred (torch.Tensor): The predicted bounding boxes and scores.
img (torch.Tensor): The image after preprocessing.
orig_img (np.ndarray): The original image before preprocessing.
img_path (str): The path to the original image.
Returns:
(Results): The result object containing the original image, image path, class names, and bounding boxes.
"""
pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape)
return Results(orig_img, path=img_path, names=self.model.names, boxes=pred[:, :6])