No description
Find a file
Glenn Jocher a9b9fe7618
Add Dockerfiles and update Docs README (#124)
Co-authored-by: Ayush Chaurasia <ayush.chaurarsia@gmail.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2022-12-31 18:39:42 +01:00
.github Add Dockerfiles and update Docs README (#124) 2022-12-31 18:39:42 +01:00
docker Add Dockerfiles and update Docs README (#124) 2022-12-31 18:39:42 +01:00
docs Add Dockerfiles and update Docs README (#124) 2022-12-31 18:39:42 +01:00
tests Add YOLO8x6 and YAML syntax improvements (#120) 2022-12-30 13:32:08 +01:00
ultralytics Add Dockerfiles and update Docs README (#124) 2022-12-31 18:39:42 +01:00
.gitignore Integration of v8 segmentation (#107) 2022-12-28 16:01:38 +01:00
.pre-commit-config.yaml Add Dockerfiles and update Docs README (#124) 2022-12-31 18:39:42 +01:00
CITATION.cff Fix CITATION.cff typos (#64) 2022-12-05 12:17:25 -08:00
CONTRIBUTING.md docs setup (#61) 2022-12-05 06:04:57 +05:30
LICENSE Initial commit 2022-09-11 19:39:46 +03:00
MANIFEST.in Trainer + Dataloaders (#27) 2022-10-10 14:01:07 +02:00
mkdocs.yml Add Dockerfiles and update Docs README (#124) 2022-12-31 18:39:42 +01:00
README.md Add Dockerfiles and update Docs README (#124) 2022-12-31 18:39:42 +01:00
requirements.txt Add CoreML iOS updates (#121) 2022-12-30 21:33:43 +01:00
setup.cfg Flake8 updates (#66) 2022-12-06 15:09:53 -08:00
setup.py docs setup (#61) 2022-12-05 06:04:57 +05:30

Ultralytics CI

Install

pip install ultralytics

Development

git clone https://github.com/ultralytics/ultralytics
cd ultralytics
pip install -e .

Usage

1. CLI

To simply use the latest Ultralytics YOLO models

yolo task=detect    mode=train    model=yolov8n.yaml      args=...
          classify       predict        yolov8n-cls.yaml  args=...
          segment        val            yolov8n-seg.yaml  args=...
                         export         yolov8n.pt        format=onnx

2. Python SDK

To use pythonic interface of Ultralytics YOLO model

from ultralytics import YOLO

model = YOLO.new("yolov8n.yaml")  # create a new model from scratch
model = YOLO.load(
    "yolov8n.pt"
)  # load a pretrained model (recommended for best training results)

results = model.train(data="coco128.yaml", epochs=100, imgsz=640, ...)
results = model.val()
results = model.predict(source="bus.jpg")
success = model.export(format="onnx")

If you're looking to modify YOLO for R&D or to build on top of it, refer to Using Trainer Guide on our docs.