ultralytics-ascend/ultralytics/solutions/analytics.py
Glenn Jocher 627453c26a
Auto-update Docs Reference section action (#13127)
Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com>
Co-authored-by: UltralyticsAssistant <web@ultralytics.com>
2024-05-25 21:25:51 +02:00

199 lines
6.9 KiB
Python

# Ultralytics YOLO 🚀, AGPL-3.0 license
from itertools import cycle
import cv2
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas
from matplotlib.figure import Figure
class Analytics:
"""A class to create and update various types of charts (line, bar, pie) for visual analytics."""
def __init__(
self,
type,
writer,
im0_shape,
title="ultralytics",
x_label="x",
y_label="y",
bg_color="white",
fg_color="black",
line_color="yellow",
line_width=2,
fontsize=13,
view_img=False,
save_img=True,
):
"""
Initialize the Analytics class with various chart types.
Args:
type (str): Type of chart to initialize ('line', 'bar', or 'pie').
writer (object): Video writer object to save the frames.
im0_shape (tuple): Shape of the input image (width, height).
title (str): Title of the chart.
x_label (str): Label for the x-axis.
y_label (str): Label for the y-axis.
bg_color (str): Background color of the chart.
fg_color (str): Foreground (text) color of the chart.
line_color (str): Line color for line charts.
line_width (int): Width of the lines in line charts.
fontsize (int): Font size for chart text.
view_img (bool): Whether to display the image.
save_img (bool): Whether to save the image.
"""
self.bg_color = bg_color
self.fg_color = fg_color
self.view_img = view_img
self.save_img = save_img
self.title = title
self.writer = writer
# Set figure size based on image shape
figsize = (im0_shape[0] / 100, im0_shape[1] / 100)
if type == "line":
# Initialize line plot
fig = Figure(facecolor=self.bg_color, figsize=figsize)
self.canvas = FigureCanvas(fig)
self.ax = fig.add_subplot(111, facecolor=self.bg_color)
(self.line,) = self.ax.plot([], [], color=line_color, linewidth=line_width)
elif type in {"bar", "pie"}:
# Initialize bar or pie plot
self.fig, self.ax = plt.subplots(figsize=figsize, facecolor=self.bg_color)
self.ax.set_facecolor(self.bg_color)
color_palette = [
(31, 119, 180),
(255, 127, 14),
(44, 160, 44),
(214, 39, 40),
(148, 103, 189),
(140, 86, 75),
(227, 119, 194),
(127, 127, 127),
(188, 189, 34),
(23, 190, 207),
]
self.color_palette = [(r / 255, g / 255, b / 255, 1) for r, g, b in color_palette]
self.color_cycle = cycle(self.color_palette)
self.color_mapping = {}
# Ensure pie chart is circular
self.ax.axis("equal") if type == "pie" else None
# Set common axis properties
self.ax.set_title(self.title, color=self.fg_color, fontsize=fontsize)
self.ax.set_xlabel(x_label, color=self.fg_color, fontsize=fontsize - 3)
self.ax.set_ylabel(y_label, color=self.fg_color, fontsize=fontsize - 3)
self.ax.tick_params(axis="both", colors=self.fg_color)
def update_line(self, frame_number, total_counts):
"""
Update the line graph with new data.
Args:
frame_number (int): The current frame number.
total_counts (int): The total counts to plot.
"""
# Update line graph data
x_data = self.line.get_xdata()
y_data = self.line.get_ydata()
x_data = np.append(x_data, float(frame_number))
y_data = np.append(y_data, float(total_counts))
self.line.set_data(x_data, y_data)
self.ax.relim()
self.ax.autoscale_view()
self.canvas.draw()
im0 = np.array(self.canvas.renderer.buffer_rgba())
im0 = cv2.cvtColor(im0[:, :, :3], cv2.COLOR_RGBA2BGR)
# Display and save the updated graph
cv2.imshow(self.title, im0) if self.view_img else None
self.writer.write(im0) if self.save_img else None
def update_bar(self, count_dict):
"""
Update the bar graph with new data.
Args:
count_dict (dict): Dictionary containing the count data to plot.
"""
# Update bar graph data
self.ax.clear()
self.ax.set_facecolor(self.bg_color)
labels = list(count_dict.keys())
counts = list(count_dict.values())
# Map labels to colors
for label in labels:
if label not in self.color_mapping:
self.color_mapping[label] = next(self.color_cycle)
colors = [self.color_mapping[label] for label in labels]
bars = self.ax.bar(labels, counts, color=colors)
for bar, count in zip(bars, counts):
self.ax.text(
bar.get_x() + bar.get_width() / 2,
bar.get_height(),
str(count),
ha="center",
va="bottom",
color=self.fg_color,
)
# Display and save the updated graph
canvas = FigureCanvas(self.fig)
canvas.draw()
buf = canvas.buffer_rgba()
im0 = np.asarray(buf)
im0 = cv2.cvtColor(im0, cv2.COLOR_RGBA2BGR)
self.writer.write(im0) if self.save_img else None
cv2.imshow(self.title, im0) if self.view_img else None
def update_pie(self, classes_dict):
"""
Update the pie chart with new data.
Args:
classes_dict (dict): Dictionary containing the class data to plot.
"""
# Update pie chart data
labels = list(classes_dict.keys())
sizes = list(classes_dict.values())
total = sum(sizes)
percentages = [size / total * 100 for size in sizes]
start_angle = 90
self.ax.clear()
# Create pie chart without labels inside the slices
wedges, autotexts = self.ax.pie(sizes, autopct=None, startangle=start_angle, textprops={"color": self.fg_color})
# Construct legend labels with percentages
legend_labels = [f"{label} ({percentage:.1f}%)" for label, percentage in zip(labels, percentages)]
self.ax.legend(wedges, legend_labels, title="Classes", loc="center left", bbox_to_anchor=(1, 0, 0.5, 1))
# Adjust layout to fit the legend
self.fig.tight_layout()
self.fig.subplots_adjust(left=0.1, right=0.75)
# Display and save the updated chart
im0 = self.fig.canvas.draw()
im0 = np.array(self.fig.canvas.renderer.buffer_rgba())
im0 = cv2.cvtColor(im0[:, :, :3], cv2.COLOR_RGBA2BGR)
self.writer.write(im0) if self.save_img else None
cv2.imshow(self.title, im0) if self.view_img else None
if __name__ == "__main__":
Analytics("line", writer=None, im0_shape=None)