No description
Find a file
ayush chaurasia 486bc49414 update
2022-11-25 01:11:55 +05:30
.github Cli support (#50) 2022-11-23 11:37:27 +01:00
ultralytics update 2022-11-25 01:11:55 +05:30
.gitignore Cli support (#50) 2022-11-23 11:37:27 +01:00
.pre-commit-config.yaml Initial pip structure (#1) 2022-09-16 22:43:06 +02:00
LICENSE Initial commit 2022-09-11 19:39:46 +03:00
MANIFEST.in Trainer + Dataloaders (#27) 2022-10-10 14:01:07 +02:00
README.md Cli support (#50) 2022-11-23 11:37:27 +01:00
requirements.txt Trainer + Dataloaders (#27) 2022-10-10 14:01:07 +02:00
setup.cfg Initial pip structure (#1) 2022-09-16 22:43:06 +02:00
setup.py Cli support (#50) 2022-11-23 11:37:27 +01:00

Ultralytics CI

Install

pip install ultralytics

Development

git clone https://github.com/ultralytics/ultralytics
cd ultralytics
pip install -e .

Usage

1. CLI

To simply use the latest Ultralytics YOLO models

yolo task=detect    mode=train  model=s.yaml ...
          classify       infer        s-cls.yaml
          segment        val          s-seg.yaml

2. Python SDK

To use pythonic interface of Ultralytics YOLO model

import ultralytics
from ultralytics import YOLO

model = YOLO()
model.new("s-seg.yaml") # automatically detects task type
model.load("s-seg.pt") # load checkpoint
model.train(data="coco128-segments", epochs=1, lr0=0.01, ...)

If you're looking to modify YOLO for R&D or to build on top of it, refer to Using Trainer Guide on our docs.